

R.V.COLLEGE OF ENGINEERING

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E) Scheme and Syllabus (2016 Scheme)

III & IV Semester (Electrical & Electronics Engineering)

Department Vision

Attain technical excellence in Electrical and Electronics Engineering through graduate programs and interdisciplinary research related to sustainability in power, energy and allied fields.

Department Mission

- To provide technical education that combines rigorous academic study and the excitement of innovation enabling the students to engage in lifelong learning
- To establish Centre of Excellence in sustainable electrical energy, smart grids and systems
- To establish tie-ups with industries and institutions of repute and to foster building up of a wide knowledge base to keep in tune with upcoming technologies.
- To motivate commitment of faculty and students to collate, generate, disseminate, persevere, knowledge and to work for the benefit of society.
- To develop simple, appropriate and cost effective inclusive technologies which are instrumental in the up-liftment of the rural society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To provide a strong foundation in Mathematics, Science and Electrical & Electronics Engineering to comprehend, analyze, design, innovate and develop products for real world applications.

PEO2:To inculcate ethical attitude, effective communication skills, leadership qualities and team spirit for a successful professional career with concern for society.

PEO3: To provide a holistic academic environment to foster excellence, entrepreneurship and multidisciplinary approach to inculcate an aptitude for research and lifelong learning.

PSO	Description
PSO1	The B.E. EEE Program must demonstrate knowledge and competence in the
	application of circuit analysis, control systems, field theory, analog and digital
	electronics, Power Electronics, microcontrollers , microprocessors, Signal
	processing and conditioning, computer hardware and software to the design,
	building , testing, protection and operation of electrical machines, power
	systems, electrical and electronic systems.
PSO2	The B.E. EEE Program must demonstrate knowledge and competence in the
	application of basic sciences, rigorous mathematics and project management
	techniques in the design of complex electrical and electronic systems.
PSO3	The B.E. EEE Program must demonstrate the ability to effectively work in a
	team, communicate correctly and develop an ethical attitude and concern for
	society and environment.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Lead Society: Institute of Electrical & Electronics Engineers (IEEE)

R.V.COLLEGE OF ENGINEERING (Autonomous Institution Affiliated to VTU, Belagavi)

R.V. Vidyaniketan Post, Mysore Road

Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus for III & IV Semesters

2016 SCHEME

ELECTRICAL & ELECTRONICS ENGINEERING

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	CS	Computer Science and Engineering		
5.	CV	Civil Engineering		
6.	СНҮ	Chemistry		
7.	EC	Electronics and Communication Engineering		
8.	EE	Electrical and Electronics Engineering		
9.	ES	Engineering Science		
10.	HSS	Humanities and Social Sciences		
11.	ME	Mechanical Engineering		
12.	РНҮ	Engineering Physics		
13.	SEE	Semester End Examination		
14.	MAT	Engineering Mathematics		

Abbreviations (Change accordingly)

INDEX

		III Sem	
Sl.	Course Code	Name of the Course	Page No.
No.			
1.	16MA31	Discrete And Integral Transforms	1
2.	16ET32	Environmental Technology	3
3.	16EE33	Analog Electronics Systems	5
4.	16EE34	Digital Logic Design with VERILOG	8
5.	16EE35	Network Analysis	11
6.	16EE36	Signals & Systems	13
7.	16DCS37	Bridge Course C Programming *	15
		IV Sem	
8.	16EE41	Measuring Instruments And Transducers	17
9.	16EM42	Engineering Materials	19
10.	16EE43	Microprocessor & Micro Controller	21
11.	16EE44	Fields & Waves	24
12.	16EE45	Electrical Machines Analysis-I	26
13.	16EE46	Control Systems	29
14. 1010.47		Professional Practice-II (Team Work & Professional	32
	10/1547	Ethics)	
15.	16DMA48	Bridge Course Mathematics *	34

R V COLLEGE OF ENGINEERNG, BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi)

	THIRD SEMESTER CREDIT SCHEME							
Sl. Course			DOC			Total Credi		
No.	Code	Course Hue	Б О5	L	Т	Р	SS	ts
1	16MA3 1	Discrete And Integral Transforms	MAT	3	1	0	0	4
2	16ET32	Environmental Technology	BT	2	0	0	0	2
3	16EE33	Analog Electronics Systems EEI		3	0	1	1	5
4	16EE34	Digital Logic Design with EE VERILOG		3	0	1	1	5
5	16EE35	Network Analysis	EEE	4	0	0	1	5
6	16EE36	Signals & Systems	EEE	3	1	0	0	4
7	16DCS 37	Bridge Course C Programming * CSE		2	0	0	0	0
	Total	number of Credits					25	
	Total Nu	mber of Hours / Wee	18+2*	4	4	12**		

Department of Electrical & Electronics Engineering

	FOURTH SEMESTER CREDIT SCHEME							
Sl	Course			C		Total		
• N 0.	Code	Course Title	BOS	L	Т	Р	SS	Credi ts
1	16EE41	Measuring Instruments And Transducers	EEE	3	1	0	0	4
2	16EM42	Engineering Materials	EC	2	0	0	0	2
3	16EE43	Microprocessor & EEE Micro Controller.		3	0	1	1	5
4	16EE44	Fields & Waves EEE		3	0	0	1	4
5	16EE45	Electrical Machine Analysis-I EEE		3	0	1	1	5
6	16EE46	Control Systems	EEE	3	1	0	0	4
7	16HS47	Professional Practice-II (Team Work & Professional Ethics)	HSS	0	0	1	0	1
8	16DMA4 8	Bridge Course Mathematics * MAT		2	0	0	0	0
	Total	number of Credits						25
	Total Nu	mber of Hours / Weel	17+2*	4	4	12**		

*Mandatory Audit course for lateral entry diploma students ** Non-contact hours

		Semester: III				
	DISCR	RETE AND INTEGRAL TRANS	FORMS			
	(Theory)					
	(COMMON TO EC. EE. EI. TC)					
Cou	Irse Code:16MA31B		CIE Marks: 100			
Cre	dits: L:T:P:S: 3:1:0:0		SEE Marks: 100			
Ηοι	irs: 36L+12T		SEE Duration: 03Hr	'S		
Cou	rse Learning Objective	es: The students will be able to				
1	Comprehend the exister series in engineering pr	ence and the role of transforms, i roblems.	nverse transforms and	l Fourier		
2	Learn to find transform	n and inverse transform of continu	ous, discontinuous and	l discrete		
	functions.					
3	Develop the knowledg	e of periodic functions as a Four he Fourier series using Fuler's for	ier series subject to D mulae	irichlet's		
4	Identify and solve in	nitial and boundary value prol	plems, interpret the	physical		
-	significance of solution	is using transform methods.	include, interpret the	Physical		
L		0				
		UNIT-I				
Lap	lace transform:			07 Hrs		
Exis	stence and uniqueness o	of Laplace Transform (LT), Tran	sform of elementary			
func	ctions, RoC. Properties	of LT - Linearity, change of sca	ale and first shifting.			
Trai	nsform of function - mul	tiplied by t ⁿ , division by t, derivat	tives and integral. LT			
of p	eriodic function, Heavisi	de unit step function, Unit impuls	e function. Heaviside			
shif	t (second shift) theorem.					
		UNIT-II				
Inv	erse Laplace Transform			07 Hrs		
Defi	nition, properties of inver	'se Laplace transform, evaluation us	sing different methods.			
and	simultaneous differential e	s. Application to solve ordinary linea	ii uiiielellual equations			
unu	sintuncous unicientiur et	UNIT-III		<u></u>		
Fou	rier Series:			08 Hrs		
Intro	duction, periodic function	, even and odd functions, properties	s. Special waveforms -	001115		
squa	re wave, half wave rec	tifier, saw-tooth wave and triang	ular wave. Dirichlet's			
cond	conditions, Euler's formula for Fourier series, Fourier series for functions of period 2L					
(par	(particular cases) - problems. Half Range Fourier series- Construction of Half range cosine					
and	and sine series. Parseval's theorem for Root mean square value of a function(without					
prooi). Complex form of Fourier series.						
UNII-IV Equation Transform:				07 Hrs		
Fou	Fourier Integral theorem Complex Fourier transform Fourier sine transform Fourier			07 1115		
cosi	cosine transform, Properties of FT, Convolution theorem. Parseval's identity. Applications					
of F	of FT.					
		UNIT-V				
Z –	Transform:			07 Hrs		
Intro	oduction, Z transform of	f standard functions, Linearity pro	operty, damping rule,			
shif	ting theorem, initial and	d final value theorems, converge	ence of Z transform,			
RoC	, inverse Z transform	using power series and partia	al fraction methods,			
con	convolution theorem, application to difference equations.					

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand - the significance of fundamental concepts of transforms and inverse				
:	transforms, even & odd functions, periodic phenomena.				
CO2	Demonstrate - the properties of transforms and inverse transforms, graphical representation of				
:	various wave forms.				
CO3	Evaluate - transforms of periodic, discontinuous and discrete functions, develop				
:	Fourier series of various type of functions.				
CO4	Apply - transform techniques to solve Differential equations and Difference equations				
:	in engineering problems.				

Reference Books

1.	Higher Engineering Mathematics, B.S. Grewal, 40 th Edition, Khanna Publishers, 2007,
	ISBN: 81-7409-195-5.
2.	A Text Book of Engineering Mathematics, N.P Bali & Manish Goyal, 7th Edition,
	Lakshmi Publications, 2010, ISBN: 978-81-7008-992-6.
3.	Advanced Engineering Mathematics, Erwin Kreyszig, 9 th Edition, John Wiley & Sons,
	2007, ISBN: 978-81-265-3135-6.
4.	Higher Engineering Mathematics, B. V. Ramana, Tata McGraw-Hill, 2008,
	ISBN: 13-978-07-063419-0.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	2	-	-	-	-	1	-	1
CO4	3	3	3	3	2	-	-	-	-	1	-	1

Low-1 Medium-2 High-3

Semester: III

	ENVIRONMENTAL TECHNOLOGY				
	(Theory)				
Cou	rse Code:16ET32/16ET42	CIE Marks: 50			
Credits: L:T:P:S: 2:0:0:0 SEE Marks: 50		SEE Marks: 50			
Hours: 25L SEE Duration: 02Hrs					
Cou	rse Learning Objectives: The students will b	e able to			
1	Understand the various components of enviro	nment and the significance of the			
sustainability of healthy environment.					
2	Recognize the implications of different types of the wastes produced by natural an				
	anthropogenic activity.				
3	3 Learn the strategies to recover the energy from the waste.				
1	Design the models that help mitigate or prevent the negative impact of proposed				
activity on the environment					

UNIT-I	
Introduction: Ecosystem – Types and structure of ecosystem. Components of environment, Environmental education, Environmental act & regulations. Global environmental issues, ISO 14000, Environmental Impact Assessment and Challenges.	05 Hrs
UNIT II	
Environmental pollution: Causes, effects and control measures of Air, noise and land pollution. Air Pollution. Clean air act, Pollution standard index. Indoor air quality. Global atmospheric change - Global warming, Acid rain &Ozone depletion and their controlling measures.	05 Hrs
UNIT III	
Water pollution and management : Pollutants in surface & ground water, water borne diseases. Water purification systems: physical & chemical treatment - aeration, solids separation, settling operations, coagulation, softening, filtration, disinfection, The common technologies for purification of drinking water - Ultraviolet radiation treatment, Reverse Osmosis. Rain water harvesting, water recycling, STP plant.	05 Hrs
UNIT IV	
Renewable energy sources and technology for generation of energy: Different types of energy, conventional sources & non conventional sources of energy, solar energy, wind energy, hydro electric energy, Geothermal Energy, Nuclear energy, Fossil Fuels & Biomass energy.	05 Hrs
UNIT V	
Solid waste management: Types, causes, control and processing. Typical generation rates, estimation of solid waste quantities, factors that affect generation rates. Management - On site handling, collection, storage and processing techniques, ultimate disposal, landfills. Reduction and recycling of waste – waste to composite, energy.	05 Hrs

Cou	Course Outcomes: After completing the course, the students will be able to					
CO1	Identify the components of environment and exemplify the detrimental impact of					
	anthropogenic activities on the environment.					
CON	Differentiate the various types of wastes and suggest appropriate safe technological					
02	methods to manage the waste.					
CO2	Aware of different renewable energy resources and can analyse the nature of waste and					
LOS	propose methods to extract clean energy.					
COA	Adopt the appropriate recovering methods to recover the essential resources from the					
C04	wastes for reuse or recycling.					

Refe	rence Books
1.	Introduction to environmental engineering and science, Gilbert, M.M., Pearson
	Education. 2 nd Edition, 2004, ISBN: 8129072770.
2.	Environmental Engineering, Howard S. Peavy, Donald R. Rowe and George
	Tchobanoglous, 2000, McGraw Hill Series in water resources and Environmental Engg.,
	ISBN: 0070491348
3.	Environmental Science – 15th edition, <u>G. Tyler Miller</u> , <u>Scott Spoolman</u> , 2012, Publisher:
	Brooks Cole, ISBN-13: 978-1305090446 ISBN-10: 130509044
4.	Environment Management, Vijay Kulkarni and T. V. Ramachandra, 2009, TERI Press,
	ISBN: 8179931846, 9788179931844

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 8 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO1
0										0		2
CO1	1	-	-	-	-	-	3	-	2	-		-
CO2	2	3	3	2	1	-	3	3	2	-	2	1
CO3	-	3	1	3	-	2	3	3	2	-	1	2
CO4	1	-	2	1	3	-	2	-	2	-	-	2

High-3 : Medium-2 : Low-1

	Semester: III						
	ANALOG ELECTRONICS CIRCUITS						
	(Theory & Practice)						
Course Code: 16EE33 CIE Marks: 100+50							
Cre	dits: L:T:P:S: 3:0:1:1	SEE Marks: 100+50					
Hou	Hours: 36L+24T SEE Duration: 03Hrs+03H						
Cou	Course Learning Objectives: The students will be able to						
1	1 Analyse a transistor circuit by developing dc and ac models						
2	2 Study different parameters and application circuits of op-amps						
3	3 Realize voltage regulators using IC`s						
4	4 Design multivibrators and timer circuits using IC 555 and IC565						
5	Realize basic ADC and DAC ci	rcuits					

UNIT-I Transistors Biasing: 08 Hrs DC Load line and bias point, biasing methods and its design approach for BJT and JFET (voltage divider bias and base bias), Thermal stability, Design of biasing for JFET. AC Analysis of BJT circuit: AC load line, Hybrid equivalent model **Power amplifiers**: Class A, B, AB, C and D amplifiers **UNIT-II Over view of operational amplifier:** Introduction to Op-amps, Analysis of ideal **07 Hrs** Op-Amp circuits, non-inverting amplifier, inverting amplifier, Integrator and differentiator. Operational amplifier: Internal Structure of Op-Amps, Parameters and Characteristics of Practical Op-Amps. **UNIT-III OP-AMPS Applications:** 07 Hrs Basic applications, Instrumentation amplifier, AC amplifier, V to I & I to V converters, Opamp circuits using diode, Sample & Hold, integrator, differentiator, and Power amplifiers. Schmitt trigger - regenerative comparator, Astable & mono - stable multi- vibrators. Wave from generator: Square wave generator, Triangular wave generator and saw tooth-wave generator. **UNIT-IV Active Filters** 07 Hrs Comparison of Active and Passive filters. Butterworth filters(Butterworth function for n=2 and n=3) ,First order low and high pass filter, Second order Low and high pass filters, Butterworth second order low pass filters. Band pass filter (wide-band and narrow band), Band reject filters (wide-band and narrow band) and All-pass filter. **Oscillators:** Principles of oscillators, Phase shift oscillator, Quadrature Oscillator, Three

phase oscillator, Wein Bridge Oscillator	
UNIT-V	
Other Analog IC's And Applications:	07 Hrs
Voltage controlled oscillators-NE/SE-566, 555 Timer-functional block diagram,	
monostable and astable multivibrators and its applications, Phase lock loops-	
phase detectors, integrated circuit PLL and applications of 565 PLL, Sample and	
Hold circuits, Digital to analog converters-R-2R ladder, weighted resistor D/A	
converters, IC D/A converters, Analog to digital converters-successive	
approximation A/D converter and A/D converter.	

LABORATORY EXPERIMENTS

- **1.** a. Verification of maximum power transfer theorem b. Verification of the venin's theorem
- **2.** a. Design of inverting amplifier, non-inverting amplifier, integrator using IC 741 b. Basics of PSPICE
- **3.** RC coupled amplifier.
- **4.** Study the working of half wave and full wave Precision Rectifiers using operational amplifier IC741
- 5. Design and implementation of peak detector and clamming circuit
- **6.** Design and implement a Schmitt trigger circuit for given UTP & LTP using op-amp.
- **7.** Design and implementation square and ramp wave generators for given frequency using operational amplifier IC 741
- **8.** Design and simulation First order High pass filter, Low pass filter, wide Band Pass filter and wide Band reject filter for the given pass band gain and cut-off frequency and plot the frequency response.
- **9.** a. Design and implement a Astable multivibrator for a given frequency and duty cycle using NE555 Timer.

b. Design a Monostable multivibrator for a given frequency using NE555 timer

- 10. Realize 2 bit flash ADC using LM 324 comparator and priority encoder IC 74148
- **11.** Realize a 4 bit DAC using R-2R ladder network and asynchronous decade Counter IC 7490.
- **12.** a. Design of VCO using IC NE/SE 566
 - b. Design of PLL using IC NE/SE 565
 - c. Study the working of voltage regulator using IC 723

Design of analog circuits using PSPICE

- **13.** Schmitt trigger circuit for given UTP & LTP
- **14.** First order High pass filter, Low pass filter, wind Band Pass filter and wide Band reject filter for the given pass band gain and cut-off
- **15.** To plot the frequency response.
- **16.** Generation of ramp wave for a given frequency using NE555 timer.
- **17.** Implement FSK modulator using IC 555.

Course Outcomes: After completing the course, the students will be able to

CO	Understand the basic fundamentals of transistor biasing and operational amplifiers
1	
CO	Analyze the performance of Op-amp and build simple circuits using op-amps
2	
CO	Apply the concepts to design various applications of op-amps
3	
CO	Design a complete analog electronic system using various analog IC's for a specific
4	application.

Ref	ference Books										
1.	Electronic Devices	and Circ	uits ,Da	vid	A. Be	ell, ,	5 th Ec	lition, 2	2010, Oxf	ord Hi	gher
	Education Press,.ISI	BN:97802	1956934	09							
2.	Microelectronics	circuits	Analysi	is	and	Des	ign,	M.H	Rashid	Thom	son,
	ISBN:0534951740										
3	Microelectronics of	circuits,	Sedra	&	Smit	th (Dxfor	d, 5 th	Edition,	ISBN	13:
•	9780195338836										
4	Microelectronics, M	lillman &	Grabel:	2^{nd}	Editio	n, TN	ИН,IS	SBN 13:	97800746	637364.	,

•

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/PO	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	1	1	-	1	-	1	1	-	1	1	1
CO2	2	1	2	1	1	1	-	2	1	2	-	2
CO3	1	1	1	2	2	-	-	-	1	2	-	1
CO4	2	2	3	2	3	1	2	-	2	3	2	1

High-3: Medium-2: Low-1

Semester: III DIGITAL LOGIC DESIGN WITH VERILOG (Theory & Practice)

		(Theory & Theorem	
Cou	rse Code: 16EE34		CIE Marks: 100+50
Cre	dits: L:T:P:S: 3:0:1:1		SEE Marks: 100+50
Hours: 36+24T			SEE Duration: 03Hrs+03Hrs
Cou	rse Learning Objective	s: The students will be able to	
1	Optimize logic express	ions using Karnaugh map, Tabul	lar method and VEM method.
2 Simplify Boolean equations and design combinational circuits with optimal gates			
2	Analyze the working p	principles of Flip-Flops and desig	gn asynchronous sequential
З	circuits.		
4	Design simple synchro	nous digital circuits based on fin	ite state machine algorithm.
E	Decign cimulate and in	nnlomont digital systems using I	וחנ

5 Design, simulate and implement digital systems using HDL.

UNIT-I	
DIGITAL LOGIC: Overview of Basic Gates and Universal Logic Gates, Logic	07 Hrs
families, TTL and CMOS logic gates, Interfacing of IC'S of different logic	
family. Simplification of logical equations using Boolean algebra.	
OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS: Terms and	
Definitions: minterm, maxterm, Standard form and canonical forms (SOP and	
POS). Simplification of logical equations using Karanaugh map, Quine -	
McClusky and VEM method: Strategy for minimization, minimization in SOP,	
POS.Incompletely specified functions minimization. Realization of logic circuits	
using AOI logic and universal gates.	
UNIT-II	
COMBINATIONAL CIRCUIT BUILDING BLOCK : Half/Full adder,	08 Hrs
Half/Full subtractor, ripple carry adder, fast adder, BCD adder, Multiplexers,	
demultiplexers, decoder, encoders, code converters, Magnitude comparators.	
Programmable Logic Devices (PLD), Programmable Read-only memories,	
Programmable Logic Arrays, Programmable Array Logic.Design of	
combinational circuits using PLD's.	
INTRODUCTION TO Verilog PROGRAMMING: Introduction, general	
structure of Verilog program for describing digital circuit, operators, architectural	
models and simple examples. Verilog code for combinational circuits.	
UNIT-III	
FLIPFLOPS - Basic latch, gated SR latch, gated D latch, master slave & edge triggered	07 Hrs
SR flip flop, D flip flops, T flip flop, JK flip flop.	
REGISTERS : Shift registers, types, parallel access shift registers. Universal shift	
registers. Verilog code for flip flops and registers.	
UNIT-IV	
COUNTERS : Design of asynchronous & synchronous counters, binary counters,	07 Hrs
BCD counters, IC counters, ring & Johnson counters. Verilog code for counters.	
SYNCHRONOUS SEQUENTIAL NETWORKS: Design techniques, concept	
of states, state diagram, state table & state assignment. Mealy & Moore state	

inoucis.	
UNIT-V	
Clocked Synchronous Sequential Network: Structure and operation of Clocked	07 Hrs
synchronous Sequential Networks, Analysis of Clocked Synchronous Sequential	
Networks, Modeling clocked synchronous sequential network behavior, State	
Table Deduction, The State Assignment, Completing the design of clocked	
synchronous sequential networks.	
	-

LABORATORY EXPERIMENTS

- **1.** Simplification, realization of Boolean expressions, full adder & full subtractor using logic gates/Universal gates.
- **2.** Realization of parallel adder/ Subtractors using 7483 IC, BCD to Excess-3 code conversion and vice versa
- **3.** MUX/DEMUX use of 74153, 74139 for arithmetic circuits and code converter.
- **4.** Realization of One/Two bit comparator and study of 7485 magnitude comparator.
- 5. Use of a) Decoder IC to drive LED display and b) Priority encoder.
- **6.** Realization of 3 bit counters as a sequential circuit and MOD N counter design (7476, 7490, 74192, 74193).
- **7.** Shift left; Shift right, SIPO, SISO, PISO, PIPO operations, ring / Johnson counter, using 74S95.
- **8.** Realization of full adder by simulation & testing the code by a test bench by simulation.
- **9.** Realization of 4 –bit adder / 2's complement subtractor by structural modeling by simulation
- **10.** Realization of 4 to 1 multiplexers and 2 to 4 decoders by simulation
- **11.** Realization of edge triggered D flip- flops and a 4 –bit shift register by simulation
- **12.** Realization of ring / twisted ring counters by simulation.

All simulation experiments can be carried out using Model Sim by Verilog code.

Cour	Course Outcomes: After completing the course, the students will be able to					
CO	Understand and remember the basic concepts of logic families, Boolean algebra,					
1	combinational and sequential circuits.					
CO	Apply the concepts to realize the digital circuits.					
2						
CO	Analyze and evaluate different techniques to realize the digital circuits					
3						
CO	Design and develop digital circuits for real time applications					
4						

Reference Books

-							
1.	Digital principles, Givone, 2002 Edition ,PHI ,ISBN-10: 0072551321						
2.	Digital Design, Morris Mano,3 rd Edition, Pearson education,ISBN-13: 978-						
	0132348485						
3	Fundamental of Digital Logic Design with Verilog, Stephan Brown & Zvonko						
•	Vranesic, 3 rd Edition, Tata McGraw Hill, ISBN 978–0–07–338054						
4	Digital Principles and Applications, Donald P Leach, Albert Paul Malvino & Goutam						
	Saha. 8th Edition, 2006, TMH, ISBN: 978933920340.						

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO1	PO1	PO1
CO/PO	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	1	1	2	1	1		1	1	1	1
CO2	2	3	2	2	1				1	1		2
CO3	3	3	2	2	1	1	1		1	1		2
CO4	3	3	2	2		1	1	1	1	1	2	2

High-3: Medium-2: Low-1

SEMESTER – III								
	NETWORK ANALYSIS							
	(Theory)							
Course Code:16EE35			CIE Marks: 100					
Credits: L:T:P:S: 4:0:0:1			SEE Marks: 100					
Hours: 45L			SEE Duration: 3Hrs					
Cou	Course Learning Objectives: The students will be able to							
1	Apply knowledge of m	athematics, science, and enginee	ring to the analysis and design					
1.	of electrical circuits.							
2.	Analyze complex netwo	orks using network theorems.						
3.	Understand the concept	of dot convention used in couple	d circuits.					
4	Find the time constant	ts, initial and final values of voltages, currents and comple						
4.	4. responses for RLC circuits under ac and dc excitations.							
5.	Use Laplace transforms	to evaluate complete response of	f electrical networks.					
6.	Understand the concept	of poles and zeros in the analysis	and synthesis of networks.					

UNIT-I

Basic Concepts:	09 Hrs				
Practical sources, source transformation, source shifting, Loop and Node analysis					
with linear dependent and independent sources for DC and AC networks. Principle					
of duality.					
UNIT-II					
Network Theorems:	09 Hrs				
Superposition, Reciprocity, Thevenin's, Norton's, Maximum Power transfer and					
Millman's theorems.					
Coupled circuits:					
Dot convention, Analysis of coupled circuits. Coupled coils in series and parallel.					
UNIT-III					
Polyphase Circuits:	09 Hrs				
Analysis of unbalanced loads connected to balanced three-phase supply, neutral					
shift.					
Resonance in Networks:					
Series and parallel resonance, Q-factor, Bandwidth. Response by varying f, L, C.					
Locus diagrams: current locus diagram of series RL, RC, and RLC circuit. Locus					
diagram of parallel circuits with variation of various parameters					
UNIT-IV					

	Two port networks:	09 Hrs				
	Z, Y, ABCD and Hybrid parameters, their inter relationship and numerical problems					
	Transient Behavior and Initial Conditions :					
	Behavior of circuit elements under switching conditions and their representation.					
	Evaluation of initial and final conditions in R-L, R-C and R-L-C Circuits for DC					
	and AC excitations.					
	UNIT-V					
Lal	LaLaplace Transformation and Applications: Definition, Laplace and inverse Laplace					
	transforms of standard functions, shifting theorem. Waveform synthesis, initial					
	and final value theorems. Impulse function, Convolution theorem, Network					
	functions of single port & two port networks-Driving point & transfer functions					
	(immetence function). Concepts of poles and zeros. Restrictions on location of					
	poles & zeros of Driving point & transfer functions.					

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Understand the basic concepts of circuits, theorems, and three phase unbalanced							
:	circuits and waveform synthesis							
CO2	Apply the basic concepts and solve circuits with DC or AC excitation and coupled							
:	circuits using theorems and transformations							
CO3	Compare the steady state and transient response of a circuit through application of							
:	inverse transformation and shifting theorems							
CO4	Design and implement a circuit as per the given specifications and constraints							
:								

Ref	erence Books
1.	Network Analysis, M.E Van Valkenberg, , PHI, 3 rd Edition, Reprint 2002, ISBN81-
	7808-729-4
2.	Engineering Circuit Analysis, Hayt, Kemmerly and Durbin, 6 th Edition, 2002,TMH,
	ISBN-10: 0071122273
3	Electrical Network, Ravish R Singh, Edition 2009 , Tata McGrawHill ,.ISBN 13:
•	978-0-07-026096-2
4	Networks and Systems, D.Roy Choudhary, , 2 nd Edition, New Age international
•	Publishing, ISBN 978-81-224-2769-7

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub

R.V.College of Engineering – Bengaluru-59

questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	PO	PO1	PO1	PO1								
CO/PO	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	1	0	2	0	0	0	1	2	0	2
CO2	3	3	2	0	2	0	0	0	1	2	0	2
CO3	3	2	1	1	2	0	0	0	1	2	0	1
CO4	3	2	2	1	2	0	0	0	1	2	0	2

High-3: Medium-2: Low-1

	SEMESTER – III							
SIGNALS AND SYSTEMS								
	(Theory)							
Cou	Course Code:16EE36 CIE Marks: 100							
Cre	dits: L:T:P:S: 3:1:0:0	SEE Marks: 100						
Hou	Irs: 36L+24T	SEE Duration: 3Hrs						
Cou	rse Learning Objective	s: The students will be able to						
1 Recognize basics of naturally existing signals, systems and their mathem representations.								
2	Analyze Linear Time Inva	ariant systems and their properties						
3 Represent signals and a systems in frequency domain and z-domain and develop mathematical process to migrate between the two representations of the same entity								
4	Understand the concept	of sampling theorem						
		UNIT-I						
 Signals: Operations Performed on the independent and dependent variable, Precedence rule, Elementary Signals. Systems: Definition of systems, system viewed as interconnection of operations, properties of systems. 								
		UNIT-II						
Linear Time Invariant Systems: Discrete Time Systems: Convolution sum, Convolution sum evaluation procedure. Continuous Time Systems: Convolution integrals, convolution integrals evaluation procedure, interconnections of LTI system, relations between LTI system properties and impulse response representation, difference equation representation of LTI system and solving difference equation (excluding differential equation), block diagram representation of systems.								
	UNIT-III							
For Dis Dis DT Tra LC	urier Representation of screte Time Fourier series screte Time Fourier Tra FT, Inverse Fourier Tra insform of Periodic Sign C difference equation.	Discrete Signals: (DTFS): Representation, Properties of DTFS nsform: Fourier Transform representation. Properties of unsform by using Partial Fraction Expansion, Fourier nals, Frequency response of Systems characterized by	07 Hrs					

	UNIT-IV										
	Appl	ication of Fourier Representation:	07 Hrs								
	Samp	ling and Reconstruction:									
	Intro	luction, representation of continuous time signals by samples: sampling									
	theor	em, impulse train sampling, sampling with zero order hold, reconstruction									
	using	interpolation, effect of under sampling, discrete time processing of continuous									
	time signals, sampling of discrete time signals: impulse train sampling, discrete time										
	decimation and interpolation.										
		UNIT-V									
Ζ	Z-Tra	ansforms: Introduction, Z Transforms, Properties of ROC, Poles and Zeros,	07 Hrs								
	Prope	erties of Z- Transforms, Inverse of Z Transforms: Partial-Fraction Expansions,									
	Powe	r Series Expansion, Transfer Function, Causality, Stability and Inverse									
	Syste	ms. Unilateral Z transform and its application to solve difference equation.									
	Relat	ion between Z Transform and Fourier Transform.									
	Cour	se Outcomes: After completing the course, the students will be able to									
	CO1	Understand representation of basic signals, LTI system and its response in t	ime and								
	:	frequency domains									
	CO2	Apply various mathematical operations on signals									
	:										
	CO3	Analyze both continuous and discrete time systems in time, frequency and z-c	lomains								
	:										
	CO4	Design simple signal conditioning systems									
	:										
	Reference Books										
	1.	Signals and Systems , Simon Haykin and Barry Van Veen, 2 nd Edition, 2008, Jo	hn								
		Wiley & Sons, ISBN: 978-0-471-16474-6									
	2.	Signals and Systems, V Oppenheim, Alan Willsky and A Hamid Nawab, Alan, 2	nd								
		Edition, 2006, Pearson Education Asia/ PHI, ISBN 10: 0138147574									
	3	Signals and Systems, H.P Hsu, R. Ranjan, Schaum's outline series, TMH, 2006	,								
	•	ISBN 13: 9780070669185									

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have

R.V.College of Engineering – Bengaluru-59

internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	PO											
CO/PO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	1	1	1	1	1	-	2	2	-	1
CO2	2	2	2	2	1	1	1	-	2	1	-	1
CO3	3	3	2	2	2	1	1	-	2	2	-	1
CO4	3	3	2	1	1	1	1	-	2	1	-	1

High-3: Medium-2: Low-1

III/IV Semester								
	C PROGRAMMING (BRIDGE COURSE)							
(Theory)								
Cou	rse Code: 16DCS37	CIE Marks: 100						
Cre	dits: L:T:P:S : 2:0:0:0 (Audit	SEE Marks: 100						
Course)								
Hours: 24L SEE : 03 Hrs								
Cou	rse Learning Objectives: The student	ts will be able to						
1	Develop arithmetic reasoning and a	nalytical skills to apply knowledge of basic						
1	concepts of programming in C.							
2	Learn basic principles of problem solving through programming.							
2	Write C programs using appropriate p	rogramming constructs adopted in						
programming.								
4	Solve complex problems using C programming.							

UNIT-I	
Introduction to Reasoning, Algorithms and Flowcharts	02
Skill development – Examples related to Arithmetical Reasoning and Analytical	Hrs
Reasoning. Fundamentals of algorithms and flowcharts.	
Introduction to C programming	01
Basic structure of C program, Features of C language, Character set, C tokens,	Hrs
Keywords and Identifiers, Constants, Variables, Data types.	
Handling Input and Output operations	02
Reading a character, Writing a character, Formatted input/output functions,	Hrs
Unformatted input/output functions.	
UNIT-II	
Operators and Expressions	02
Arithmetic operators, Relational operators, Logical Operators, Assignment	Hrs
operators, Increment and decrement operators, Conditional operators, Bit-wise	
operators, Arithmetic expressions, evaluation of expressions, Precedence of	
arithmetic operators, Type conversion in expressions, Operator precedence and	
associativity.	
Programming Constructs	03
Decision Making and Branching	Hrs
Decision making with 'if' statement, Simple 'if' statement, the 'ifelse'	

statement, nesting of 'ifelse' statements, The 'else if' ladder, The 'switch'							
statement, The '?:' operator, The 'goto' statement.							
Decision making and looping The while statement, the do statement, The 'for'							
statement, Jumps in loops.							
UNIT-III							
Arrays	02						
One dimensional arrays, Declaration of one dimensional arrays. Initialization of	Hrs						
one dimensional arrays, Two dimensional arrays, Initializing two dimensional							
arrays.							
Character Arrays and Strings	02						
Declaring and Initializing String Variables, Reading Strings from Terminal,	Hrs						
Writing strings to screen, Arithmetic Operations on characters, String operations							
using with and without String handling functions.							
UNIT-IV							
User-defined functions	03						
Need for User Defined Functions, Definition of functions, Return values and	Hrs						
their types. Function calls, Function declaration, Category of functions, Nesting							
of functions Functions with arrays Storage classes							
Structures and Unions	03						
Introduction Structure definition Declaring structure variables Accessing	Hrs						
structure members. Structure initialization. Conving and comparing structure	1115						
variables Arrays of structure Arrays within structures Structures and functions							
Unions.							
UNIT – V							
Pointers : Introduction . Accessing the address of a variable. Declaring and	03						
initializing of pointer variables. Accessing a variable using pointers. Chain of	Hrs						
pointers. Pointer expressions. Pointer increments and scale factor. Pointers and							
arrays. Pointers and character strings.							
File Managements in C	01						
Basic concents of files Defining and opening a file closing of a file							
Input/Output operations on files	1110						
input output operations on mes.							
Course Outcomes: After completing the course, the students will be able to							
CO1 Understand and explore the fundamental computer concents and	l basic						
programming principles like data types input/output functions or	i UdSIC						
programming principles like data types, input/output functions, of	,crat015,						

CO2	Analyze and Develop algorithmic solutions to problems.

- CO3 Implement and Demonstrate capabilities of writing 'C' programs in optimized, robust and reusable code.
- CO4 Apply appropriate concepts of data structures like arrays, structures, and files to implement programs for various applications.

Reference Books:

1	Programming in C, P. Dey, M. Ghosh, 1 st Edition, 2007, Oxford University press,
•	ISBN -13: 9780195687910.
2	The C Programming Language, Kernighan B.W and Dennis M. Ritchie, 2 nd Edition,
•	2005, Prentice Hall, ISBN -13: 9780131101630.
3	Turbo C: The Complete Reference, H. Schildt, 4 th Edition, 2000, Mcgraw Hill
•	Education, ISBN-13: 9780070411838.
4	Understanding Pointers in C, Yashavant P. Kanetkar, 4 th Edition, 2003, BPB

publications, ISBN-13: 978-8176563581.

Scheme of Continuous Internal Evaluation:

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The two tests are conducted and each test is evaluated for 30 marks adding up to 60 marks. The marks component for assignment is 10. The total marks of CIE are 100.

Scheme of Semester End Examination:

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	2	2	2	1	-	-	-	-	2	-	1
CO2	3	2	2	2	2	-	-	-	2	1	-	1
CO3	3	2	2	2	2	1	1	-	2	2	1	2
CO4	3	3	3	2	2	1	1	-	2	2	1	2

Low-1	Medium-2	High-3
-------	----------	--------

SEMESTER – IV MEASURING INSTRUMENTS AND TRANSDUCERS (Theory)

			(110	UI y j						
Cou	rse Code:16EE41				CIE Marks: 100					
Cre	dits: L:T:P:S: 3:1:0:0				SE	E Mark	s: 100			
Hou	irs: 36L+24T				SE	E Dura	tion: 3Hrs	6		
Cou	rse Learning Objective	s: The st	tudents w	vill be able to)					
1	Understand the errors e	ncounter	countered in measuring instruments							
2	Derive the balance conditions in AC and DC bridges for the measurement L, C, R and									
	dissipation factor etc.									
2	To analyze the working of analog and digital measuring instruments, and determine the									
3	necessary conditions for	r workin	ument transfo	ormers	•					
4	To analyze the working principles of signal generators used in the laboratories.									
_	To distinguish and o	lescribe	various	transducers	and	display	devices	used	in	
כן	instrumentation.									

UNIT-I	
Measurement Errors: Definition of error, Gross errors and systematic errors,	07 Hrs
Absolute and relative errors, Accuracy, Precision, Resolution and Significant	
figures. Illustrative examples	
Digital Instruments: Introduction, Digital voltmeters (DVM) of ramp type,	
successive approximation principles, Resolution and sensitivity, General	
specifications, Digital Multi-meters. DC and DAC. Digital frequency meters.	
UNIT-II	
Measurement Errors:	07 Hrs
Whetstone's bridge, Kelvin Bridge; AC bridges - Capacitance Comparison Bridge,	
Maxwell's bridge, Wein's bridge, Schering bridge, D'sautys bridge, Wagner's	
earth connection, examples	
UNIT-III	
Measuring Instruments (AC and DC):	07 Hrs
Introduction, ammeter, voltmeter, wattmeter (dynamometers type), energy's meter	
(induction type).Multi-range voltmeter, extending voltmeter range. AC voltmeter	
using Rectifiers – Half wave and full wave, Peak responding and True RMS	

voltmeters, ammeters, multimeters.

ſ	Instrument Transformers:								
	Construction and theory of instrument transformers, ratio and phase angle errors of								
	C.T. and P.T. including derivation and Numerical problems.								
	UNIT-IV								
	Signal Generators and Analyzers:								
	Introduction, Fixed and variable AF oscillator, Standard signal generator,								
	Laboratory type signal generator, AF sine and Square wave generator, Function								
	generator, Square and Pulse generator, Sweep frequency generator, Analog and								
	Digital storage oscilloscope.								
	Display Devices:								
	Digital display system, classification of display, Display devices, LEDs, LCD								
	UNIT-V								
TrT	ransducers:	08 Hrs							
	Introduction, Electrical transducers, Selecting a transducer, Resistive transducer,								
	Resistive position transducer, Strain gauges, Resistance thermometer, Thermistor,								
	Inductive transducer, Differential output transducers and LVDT, capacitive								
	transducer, Photoelectric transducer, Photovoltaic transducer, Semiconductor photo								
	devices, Temperature transducers-RTD, Thermocouple, Piezo electric transducer.								
	Measurements of noise and vibrations.								

Course	Course Outcomes: After completing the course, the students will be able to											
CO1:	Define the different measuring network parameters and understand the measuring											
	techniques in analog and digital systems.											
CO2:	Analyze the different methods of implementation in the working of measuring											
	instruments and compare the end results.											
CO3:	Asses the performance of different measuring instruments.											
CO4:	Plan and design various measuring instruments for their innovation.											

Reference Books

1.	Electronic Instrumentation and Measurements , David A Bell, PHI,2 nd Edition,
	2006,ISBN 10: <u>0132499541</u>
2.	Modern electronic instrumentation and measuring techniques , Cooper D & A D
	Helfrick, 1998,PHI,. ISBN-8120307526
3	Electronics & electrical measurements , A K Sawhney , 9th edition, 2010, Dhanpat
•	Rai & sons,.ISBN-10: 8177001000
4	Electronic Instrumentation ,H. S. Kalsi, 2 nd Edition,2004,TMH, ISBN-
•	9780074621868

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub

R.V.College of Engineering – Bengaluru-59

questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
CO1	1	1	2	1	-	2	2	1	-	2	-	
CO2	2	2		2	2	3	1		1	1		2
CO3	3	1	1	3	2	2	2	3	1	1	2	1
CO4	1	2	3	3	1	2	2		3	2	2	3

High-3: Medium-2: Low-1

	Semester: IV							
	ENGINEERING MATERIALS							
		(Theory)						
	(COMMON)	TO EC, EE, EI & TE)						
Cou	rse Code:16EM42B	CIE Marks: 50						
Cre	dits: L:T:P:S 2:0:0:0	SEE Marks: 50						
Hou	Hours: 24L SEE Duration: 2 Hrs							
Cou	rse Learning Objectives: The stude	ents will be able to						
1	Understand electrical conduction (transport) in solids based on quantum mechanics							
1.	and modern band theory							
2.	Understand lattice vibration and thermal conduction (transport) in solids							
Э	Understand major properties of bull	Inderstand major properties of bulk and nanostructured semiconductors & effects of						
з.	niconductors							
4.	Understand the principles of light-s	olid interactions.						

0111-1									
Introduction: Classification and Properties of Materials, Materials Used in	04								
Electrical and Electronic Industries, Requirements and Future Developments of									
Electronic Materials									
UNIT-II									

Classical Theory of Electrical Conduction and Conducting Materials:	05						
Resistivity, TCR (Temperature Coefficient of Resistivity) and Matthiessen's Rule,	Hrs						
Traditional Classification of Metals, Insulators and Semiconductors, Drude's Free							
Electron Theory, Hall Effect, Wiedemann-Franz Law, Resistivity of Alloys,							
Nordheim's Rule, Resistivity of Alloys and Multiphase Solids, Materials for							
Electricity Transmission							
UNIT-III							

Thin Film Electronic Materials: Techniques for Preparation of Thin Films, Thin						
Film Conducting Materials, Thin Film Resistors, Transparent and Conductive						
Thin Films, Thin Film Magnetic Materials						
UNIT-IV						
Organic Electronic Materials: Conducting Polymers, Semiconducting Organic						
Materials, Organic Superconductors, Organic Piezoelectric Materials.	Hrs					

 UNIT-V
 05

 Nanomaterials for Electronic Device Applications: Techniques for Preparation
 05

 of Nanomaterials, Micro-/nano-devices Using Nanostructured Materials, Hrs
 Hrs

graphene, carbon nano tubes

Cour	Course Outcomes: After completing the course, the students will be able to								
CO1	Define different electronics materials properties, devices and its preparation								
:	techniques								
CO2	Classify & summarize different materials based on its function properties and its								
:	preparation for real time devices								
CO3	Identify electronics materials based on functional properties and preparation								
:	techniques								
CO4	Analyze the significance of emerging materials from appraising the existing								
:	materials properties and preparation techniques for devices and applications								

Ref	Reference Books							
1.	Introduction to Electronic Materials for Engineers, Wei Gao & Zhengwei Li, Nigel							
	Sammes, 2 nd Edition, World Scientific Publishing Co. Pvt. Ltd, ISBN:9789814293693							
2.	Flexible Electronics: Materials and Applications: William S, Wong and Alberto Salleo.							
	ISBN 978-0-387-74362-2,2009							

Continuous Internal Evaluation (CIE); Theory (50 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 05 marks adding up to 15 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 25 marks each and the sum of the marks scored from three tests is reduced to 30. The marks component for Assignment is 05. The total marks of CIE are 50.

Semester End Evaluation (SEE); Theory (50 Marks)

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 10 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 8 marks adding up to 40 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	1	2	-	-	-	-	2
CO2	3	2	-	-	-	1	2	-	-	-	-	2
CO3	3	3	2	-	-	1	2	-	-	-	-	2
CO4	3	3	2	2	-	2	2	-	-	-	-	2

Low-1 Medium-2 High-3

Semester: IV									
	MICRO PROCESSOR AND MICRO CONTROLLERS								
		(Theory & Practice)							
Cou	rse Code: 16EE43		CIE Marks: 100+50						
Cre	dits: L:T:P:S: 3:0:1:1		SEE Marks: 100+50						
Hou	rs: 36L		SEE Duration: 03Hrs+03Hrs						
Cou	Course Learning Objectives: The students will be able to								
1	Specify, design, implement, and debug simple microprocessor-based applications								
1	using the Intel 8086 architecture								
2	Demonstrate the differences between microprocessor and microcontroller								
3	Analyze the architecture of 8051 microcontroller								
	Use software developn	nent tools to assemble, test and	debug the programs by using						
4	breakpoints, single-ste	breakpoints, single-stepping, monitoring the changes in register/memory contents, on							
	a hardware platform or on an emulator								
5	Analyze the architectu	ral support of MCUs to interfac	e with external world						

UNIT-I					
8086 PROCESSORS:	08 Hrs				
Historical background, The microprocessor based personal computer system,					
Van Neumann and Harvard Architecture, RISC & CISC processor architecture,					
8086 CPU Architecture, Machine language instruction formats, Addressing					
modes, Instruction execution timing. Assembler Directives and operators					
INSTRUCTION SET OF 8086: Data transfer and arithmetic instructions.					
Illustration of these instructions with example programs. , Maximum Mode,					
Minimum Mode of 8086					
UNIT-II					
BYTE AND STRING MANIPULATION: Branch type, loop, NOP & HALT,	07 Hrs				
logical and shift and rotate instructions String instructions, Branching					
Instructions, Processor Control Instructions, Macros, Modular Programs,					
Procedures REP Prefix, Procedures, Illustration of these instructions with					
example programs					
UNIT-III					
8086 INTERRUPTS: Introduction to stack, stack structure of 8086, 8086 Interrupts	07 Hrs				
and ISR, NMI, INTR, and Interrupt programming, Passing parameters to procedures,					
Interrupt examples, Macros, Timing and Delays. Basic Peripherals and their Interfacing					
with 8086: Semiconductor Memory Interfacing-Static RAM Interfacing of 8086. Modes					
of operation. Advanced processor: Typical characteristics of RISC Architecture, ARM					
advanced RISC machine					
UNII-IV	07 11				
Hardware of 8051 Microcontrollers:	07 Hrs				
Microcontroller Architecture and Din Europhies of 8051 Microcontroller CDU					
Organization Program Counter Timing and Machine Cycles Internal Memory					
Organization Registers Stack Input/ Output Ports Counters and Timers Serial Data					
Input and Output. Interrupts. Power Saving Modes					
UNIT-V	1				
8051 Microcontroller Based System Design:	07 Hrs				
Input/output Port Programming, Programming timers, Asynchronous Serial Data					
Communication, Interrupt Service Routines. Programming in C. Inline					
Assembly, Interfacing Matrix Keyboard and Seven Segment Displays.					
Interfacing ADC and DAC, Interfacing of LCD Display					

LABORATORY EXPERIMENTS

8086 Microprocessor programming using MASM

1. Data Transfer Programs: Block Moves (With & amp; Without Overlap) with & amp; without

String Instructions,

- 2. Arithmetic Operations: Addition, Subtraction, Multiplication & amp;
- 3. Code Conversions: Use XLAT Instruction to Convert Binary to BCD,
- 4. Binary to ASCII, Binary to gray
- 5. (a) Linear Search (b)Binary Search (c)Bubble Sort (d) Selection Sort

6.ASCII Operations: Addition, Subtraction, Multiplication & amp; Division on **Interfacing programs using 8051 Microcontroller.**

7.UP/down counters

8. Stepper motor

9.DAC interface

- 10.Hex keypad 7 segment display interface
- 11. Elevator interface
- 12. LCD interface
- 13. ADC interface
- 14. Program on timer.

C	ours	se Outcomes: After completing the course, the students will be able to				
0	2 0	Discuss the basic design principles of processor/controller based system design				
	1					
0	20	Identify the different operational &non-operational attributes to be satisfied while				
	2	designing processor/controller based application				
0	20	Analyze the execution of instructions/program knowing the basic principles of				
	3	microprocessor, microcontroller architecture and assembly language				
0	CO	Evaluate the performance of different architectures to meet data processing needs of	of			
	4 real world applications					
Re	fere	nce Books				
1.	M	icro-Processors and Interfacing-Programming & Hardware , Douglas Hall, , 2 nd				
	E	dition, 2002., TMH, ISBN: 0070097674				
2.	. Advanced Microprocessors and Peripherals , A.K Ray KM Bhurchandi , TMH					
	Publications ,ISBN-0-07-463841					
3.	T	ne Intel Micro-processors, Architecture, Programming and Interfacing , Barry B.				
	B	rey, 6 th Edition, 2008, Pearson Education,. ISBN: 9788131726228				
4.	T	ne 8051 Microcontroller Architecture, Programming & Applications , Kenneth J.				

Ayala, Thomson Learning; 2nd Edition, 2004. ISBN: 9780314201881

Continuous Internal Evaluation (CIE): Total marks: 100+50=150 Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory – 100 Marks

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	PO	PO1	PO1	PO1								
CO/PO	1	2	3	4	5	6	7	8	9	0	1	2
CO1	2	2	3	3	2	-	-	-	1	1	2	2
CO2	3	3	3	3	2	-	-	-	1	1	2	2
CO3	3	3	3	2	1	-	-	-	1	1	2	2
CO4	3	3	3	3	2	-	-	-	1	1	2	2

High-3: Medium-2: Low-1

	FIELDS AND WAVES							
		(Theory)						
Cou	rse Code:16EE44		CIE Marks: 100					
Cre	dits: L:T:P:S: 3:0:0:1		SEE Marks: 100					
Hours: 36L			SEE Duration: 3Hrs					
Cou	rse Learning Objective	s: The students will be able to						
1.	Calculate electric field an	d potential due to different charge co	onfigurations.					
2.	Apply Poisson's equation	on to derive capacitance of differe	ent configurations.					
3.	3. Derive magnetic field intensity for various current configurations.							
Understand the concept		of EM waves and compare wav	e propagation through different					
4.	media.	media.						
5.	Derive the transmission	and reflection coefficients for an	EM wave.					

UNIT-I

Electrostatics 1 :	07 Hrs
Coulomb's law, illustrative examples, Electric Field Intensity, Field intensity due to	ĺ
point charge, Line charge distribution, Surface charge distribution, sheet of charge,	ĺ
Circular ring and disk;. Flux, flux density Gauss' Law, Divergence	ĺ
Theorem(qualitative treatment), Application of Gauss's Law to Continuous Volume	ĺ
Charge, Line Charge, Sheet Charge, Metal sphere, spherical shell; Illustrative	ĺ
examples in all topics; Maxwell's equations for electrostatics	
UNIT-II	
ectrostatics 2 :	07Hrs
Nork done to move a point charge, Electric potential, Relation between E and V,	ĺ
Potential due to Line charge distribution, Surface charge distribution, sheet of	ĺ
harge, Circular ring and disc; Energy Density in an Electric Field ;Properties of	
onductors and field inside a conductor; Boundary Conditions (dielectric-dielectric,	
ielectric-conductor), Poisson's and Laplace's Equations, Uniqueness Theorem,	
applications of Laplace's and Poisson's Equations to a parallel plate , coaxial and	ĺ
pherical capacitors; Illustrative examples in all topics	
UNIT-III	
fagnetostatics1 :	07 Hrs
Current, Current density, Biot -Savart Law , Ampere's Circuital Law and its	ĺ
pplications; Magnetic Flux Density; Magnetic field intensity H; Magnetic Scalar	ĺ
nd Vector Potentials; Magnetic Force and torque; Forces due to Magnetic Fields,	ĺ
A Magnetic Dipole , Magnetization in Materials, Classification of Magnetic	ĺ
Aaterials	ĺ
UNIT-IV	
fagnetostatics2: Magnetic Boundary Conditions Inductance; Inductance of a	07 Hrs
olenoid and toroid. ; Faraday's Law ,Transformer and Motional EMFs;	
Displacement Current ; Maxwell's Equations in Final Forms for Time-Varying	
ields; Time-Harmonic Fields , Illustrative examples	
UNIT-V	
ectromagnetic waves : Introduction, Waves in General ,Wave Propagation in	08 Hrs
ossy Dielectrics , Plane Waves in Lossless Dielectrics , Plane Waves in Free Space	
Plane Waves in Good Conductors, Power and the Pointing Vector, Reflection of a	
Plane Wave at Normal Incidence , Illustrative examples	
	1

Course Outcomes: After completing the course, the students will be able to

CO1	Understand the basic concepts of electric fields, magnetic fields, material properties
:	and electromagnetic waves
CO2	Apply the basic laws of Physics and Engineering Mathematics to solve complex
:	problems in electric fields, magnetic fields and electromagnetic waves
CO3	Analyze different charge and current configurations to derive their fields, potential
:	and energy
CO4	Evaluate, analyze and design simple components from their field specifications,
:	propagation in different medium and boundary conditions

Ref	erence Books
1.	Elements of Electromagnetics , Matthew N O Sadiku , 4 th Edition,2007,Oxford
	University Press; ISBN- 978-0199321384
2.	Engineering Electromagnetics , William H. Hayt Jr. and John A. Buck , 6th Edition,
	2001; Tata McGraw Hill, ISBN 9780071244497
3	Introduction to Electromagnetics , David J Griffiths, , 3 rd Edition , PHI, ISBN 978-
•	8120316010
4	Field and Wave Electromagnetics, David K. Cheng II Edition1989, Indian Reprint
•	2001, , Pearson Education Asia ,ISBN - <u>9787302152125</u>

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/P	DO1	PO	PO1	PO1	PO1							
0	POI	2	3	4	5	6	7	8	9	0	1	2
CO1	2	2	2	1	1	-	-	-	1	2	-	1
CO2	3	3	2	1	1	-	-	-	1	2	-	1
CO3	3	3	2	1	1	-	-	-	1	2	-	1
CO4	3	3	2	1	1	-	-	-	1	2	-	1

High-3: Medium-2: Low-1

	ELECTRICAL MACHINE ANALYSIS- I								
		(Theory & Practice)							
Cou	rse Code: 16EE45		CIE Marks: 100+50						
Cre	dits: L:T:P:S: 3:0:1:1		SEE Marks: 100+50						
Hou	rs: 36L		SEE Duration: 03Hrs+03Hrs						
Cou	rse Learning Objective	es: The students will be able to							
1	Apply the theory of ele	ectromagnetism in analyzing elec	ctrical machines						
2	Describe the construction, characteristics and operation of the transformers and								
2	induction machines								
2	Analyze the performance of transformers and induction machines at different loading								
5	conditions								
Develop the equivalent circuit model of induction motors to evaluate their performa									
4	characteristics	characteristics							
5	Design and estimate the	Design and estimate the physical dimensions of the machine in relation to the output.							
J									

UNIT-I			
Theory Of Transformer: Principle, equivalent circuit. Losses, Predetermination	07Hrs		
of efficiency & Percentage regulation, tap changing of transformer ON load, all			
day efficiency Auto Transformers: Uses, advantages & disadvantages. Causes of			
failure of transformers			
UNIT-II			
Industrial Tests: H.V.Flash test, Sumner's test.	07 Hrs		
Parallel Operation: Polarity test, load sharing of transformers in parallel.			
3-Phase Transformers: Y: Y, Y: Δ , Δ : Y, and Δ : Δ , open delta connection, Scott			
connection, phasor diagrams. Harmonics in transformers			
UNIT-III			
Induction Machine:	07 Hrs		
Production of rotating magnetic field, operation on no-load and load, phasor diagram,			
Power flow diagram- calculation of HP, torque, efficiency and power factor. Torque –			
slip characteristics, Maximum torque, Performance Of Induction Motors: No load and			
blocked rotor tests, equivalent circuit, circle diagram, Cogging and crawling			
UNIT-IV			
Method of starting induction motors. Speed control of induction motor by pole	07 Hrs		
changing method, stator voltage control and Rotor resistance control.			
Single Phase Induction Motors:			
Double field revolving theory, Starting methods and type of motors, Single phase series			
motors, repulsion motors. Induction Generator :principle of working ,isolated induction			
generator, Advantages ,Limitations and applications of Induction Generator			
UNIT-V			
Transformer	08 Hrs		
Design on main dimensions, Design of windings, Design of insulations, Design of			
core sections(single phase, Three phase), problems			
Induction motor :			
Design on specifications, Stator design, Rotor Design(Single phase , Three			
phase),problems			

LABORATORY EXPERIMENTS

1. SC, OC test on 1 - phase transformer, predetermination of efficiency & regulation and verification by Load test at UPF.

- 2. Sumpner's test
- Parallel operation of two dissimilar 1phase transformers. 3.
- Connection of 3 single phase transformers in star star, star-delta etc. and 4.
- determination of efficiency & voltage relationship for balanced direct loading. 5. Scott connection-for balanced and unbalanced loads.
- Load test on 3phase Induction motor performance evaluation. 6.
- A) Equivalent circuit of 3 phase induction motor / predetermination of 7. performance.

B) Circle Diagram of 3 phase Induction Motor-performance evaluation.

- Speed control of 3 phase induction motor stator voltage & rotor resistance control. 8.
- Load test on 1-phase Induction motor. 9.
- Load test on Induction generator. 10.

Course Outcomes: After completing the course, the students will be able to

CO1	Understand the operation of transformers and induction motors
CO2	Analyze the performance characteristics of Transformer and Induction motors

CO3 | Evaluate, assess and compare the operation of machines

Design the various parts of the machine by changing different parameters in steps to obtain **CO4** maximum output.

Reference Books

1.	Theory of Alternating Current Machines , Alexander Langsdorf, , 4th Edition ,T.M.H
	publications ISBN 10: 1331129087 ISBN13: 9781331129080
2.	Performance and Design of A.C. Machines , M. G. Say.3 rd Edition, , C.B.S.
	Publishers ,ISBN-10: 8123910274
3.	Electrical Machines , Ashfaq Hussain,. 3rd Edition, Dhanpatrai and Co. ISBN-
	9788177001662
4.	A Course in Electrical Machine Design , A.K. Sawhney, 2001, DanpatRai and Co, ISBN
	007-709610

Continuous Internal Evaluation (CIE): Total marks: 100+50=150

Theory – 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and Self-Study(S). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of guizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Self-study is 20. The total CIE for theory is 100.

Laboratory- 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 40 marks. At the end of the semester a test is conducted for 10 marks. Total marks for the laboratory is 50.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory – 100 Marks

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions

R.V.College of Engineering – Bengaluru-59

for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/P O	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO 9	PO1 0	PO1 1	PO1 2
CO1	2	2	-	-	2	1	2	3	2	2	1	1
CO2	3	-	2	2	-	2	1	-	3	2	2	2
CO3	-	2	1	3	2	2	-	1	1	2	2	2
CO4	2	2	2	1	_	2	2	1	2	2	_	2

High-3: Medium-2: Low-1

SEMESTER – IV								
	CONTROL SYSTEMS							
	(Theory)							
Course Code:16EE46		CIE Marks: 100						
Credits: L:T:P:S: 3:1:0:0		SEE Marks: 100						
Hours: 36L+24T		SEE Duration: 3Hrs						

Cou	rse Learning Objectives: The students will be able to					
1.	1. Develop model and simulate single-input single-output linear systems					
2.	Design a system, component or process to meet desired needs					
3.	Write equivalent differential equation and transfer function models for a give system					
	Acquire the knowledge of classical control system analysis techniques.	svstem				
4.	response and performance characteristics	-)				
_	Analyze and evaluate stability of feedback control systems using both ti	me and				
5.	frequency domain methods					
6.	Express the effects of PID controllers and compensators on the system perform	nance				
r						
	UNIT-I					
Intr	oduction:	07				
Defi	nitions, Classification of control systems open loop and closed loop, linear	Hrs				
and	nonlinear, time variant and time invariant, continuous and discrete time					
syste	ems. Block diagram of a typical closed loop control system showing the basic					
struc	ture and different terminologies					
Mod	leling and Representation of Control System:					
The	transfer function concept, transfer function of simple electrical networks,					
diffe	rent forms of transfer functions, transfer function of a closed loop system,					
bloc	k diagrams and signal flow graphs. Masons gain formula. Modeling of					
mec	hanical translational and rotational systems and their electrical analog, gear					
train	s, modeling of a.c &d.c servomotors					
	UNIT-II					
Time Response of Feedback Control Systems:						
Standard test signals, step response of first and second order systems, time						
dom	ain specifications. Type and order of the system, Steady state error and static					
error constants. Effect of feedback on sensitivity						
	UNIT-III					
Stat	ility Analysis:	07				
Con	cept of stability, types of stability, Routh Hurwitz criterion, relative stability	Hrs				
anal	VSIS					
K00	LOCUS:					
introduction, concept of magnitude and angle criterion, construction of root loci,						
Ero						
Intro	duction to frequency domain plots. Polar plots frequency domain	07 Hrs				
specifications, concept of phase margin and gain margin, correlation between time						
and frequency response. Principle of argument Nyquist plots and Nyquist						
stability criterion Bode plots stability analysis using Bode diagrams						
UNIT-V						
Con	trollers and Compensators: Basic control actions P. PI. PD and PID	08				
cont	rollers and their effects on the dynamic and static behavior of the system.	Hrs				
Lag.	lead and lead-lag compensators, realization using RC networks. Design of	-				
cont	rollers and compensators.					

Reference Books

1.	Control System Engineering , J Nagarath and I.J.Nagarath and M Gopal, 5 th edition,
	2007, New age international publishers, ISBN: 81-224-1775-2
2.	Control systems - Principles and design , M.Gopal , 2 nd edition, 2006, TMH, ISBN:

	0071231277, 9780071231275
3	Modern control engineering , K.Ogata, 2004, 4 th edition., Pearson education , ISBN:
•	1-317-1887-2
4	Modern Control Systems , R.C. Dorf and R.H.Bishop, Addison Wesley, 1995.ISBN
•	978-1-4612-0153-3

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for assignment is 10. The total marks of CIE are 100.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/P		PO2	PU3		PO5	POG		PO8	ρΩq	PO1	PO1	PO1
0	101	102	105	104	105	100	10/	100	105	0	1	2
CO1	3	2	2	1	1	-	-	1	1	2	-	3
CO2	3	2	2	2	2	-	-	1	2	2	-	3
CO3	2	3	2	1	2	1	1	2	3	2	1	3
CO4	2	3	3	2	3	1	1	2	3	2	1	3

High-3: Medium-2: Low-1

	III / IV Semester						
	Professional Practice – II						
	COMMUNICATION SKI	LLS AND PROFESS	SIONAL ETHICS				
Co	Course Code:16HS47 CIE Marks: 50						
Cr	redits: L:T:P:S: 0:0:1:0		SEE Marks: NA				
Hours: 18 Hrs			CIE Duration: 02 Hrs				
Course Learning Objectives: The students will be able to							
1	1 Develop communication style, the essentials of good communication and confidence to						
2	2 Manage stress by applying stress management skills.						
3	Ability to give contribution to the planning and coordinate Team work.						

4 Ability to make problem solving decisions related to ethics.

III Semester		
UNIT-I		
Communication Skills: Basics, Method, Means, Process and Purpose, Basics of Business	06 Hrs	
Communication, Written & Oral Communication, Listening.		
Communication with Confidence & Clarity- Interaction with people, the need the uses		
and the methods, Getting phonetically correct, using politically correct language, Debate &		
Extempore.		
UNIT-II	1	
Assertive Communication- Concept of Assertive communication, Importance and	06 Hrs	
applicability of Assertive communication, Assertive Words, being assertive.		
Presentation Skills- Discussing the basic concepts of presentation skills,		
Articulation Skills, IQ & GK, How to make effective presentations, body language		
& Dress code in presentation, media of presentation.		
UNIT-III.A		
Team Work- Team Work and its important elements Clarifying the advantages and	06 Hrs	
challenges of team work Understanding bargains in team building Defining behaviour to		
sync with team work Stages of Team Building Features of successful teams.		
IV Semester		
UNIT-III.B		
Body Language & Proxemics - Rapport Building - Gestures, postures, facial expression	06 Hrs	
and body movements in different situations, Importance of Proxemics, Right personal		
space to maintain with different people.		
UNIT-IV		
Motivation and Stress Management: Self-motivation, group motivation,	06 Hrs	
leadership abilities, Stress clauses and stress busters to handle stress and de-stress;		
Understanding stress - Concept of sound body and mind, Dealing with anxiety,		
tension, and relaxation techniques. Individual Counselling & Guidance, Career		
Orientation. Balancing Personal & Professional Life-		
UNIT-V	l	
Professional Practice - Professional Dress Code, Time Sense, Respecting People & their	06 Hrs	
Space, Relevant Behaviour at different Hierarchical Levels. Positive Attitude, Self Analysis		
and Self-Management.		
Professional <i>E</i> thics - values to be practiced, standards and codes to be adopted as		
professional engineers in the society for various projects. Balancing Personal &		
Professional Life		

Cou	rse Outcomes: After completing the course, the students will be able to				
CO	I: Inculcate skills for life, such as problem solving, decision making, stress management.				
CO2	2: Develop leadership and interpersonal working skills and professional ethics.				
CO3	3: Apply verbal communication skills with appropriate body language.				
CO4: Develop their potential and become self-confident to acquire a high degree of self.					
Reference Books					
1. Stephen R Covey, The 7 Habits of Highly Effective People, Free Press, 2004 Editio					
	ISBN: 0743272455				
2. Dale Carnegie, How to win friends and influence people, General Press, 1 st Edition, 2016					
	ISBN: 9789380914787				
3.	Kerry Patterson, Joseph Grenny, Ron Mcmillan, Crucial Conversation: Tools for Talking				

	When Stakes are High, 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book ,2014 Edition, Tata McGraw Hill ISBN: 9781259058738

Scheme of Continuous Internal Examination (CIE) Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity	Weightage				
Ι	Test 1 is conducted in III Sem for 50 marks (15 Marks Quiz and 35 Marks	50%				
	Descriptive answers) after completion of Unit-1, Unit-2 and Unit -3.A for 18					
	hours of training sessions.					
II	Test 2 is conducted in IV Sem for 50 marks ((15 Marks Quiz and 35 Marks	50%				
	Descriptive answers) after completion of Unit -3B, Unit - 4 and Unit-5 for 18					
	hours of training sessions.					
	At the end of the IV sem Marks of Test 1 and Test 2 is consolidated for 50 marks	s (Average of				
	Test1 and Test 2 (T1+T2/2). The grading is provided by the Coe. The final (CIE marks is				
	scrutinized by the committee comprising of HSS- Chairman, Training	Co-ordinator,				
	respective department Staff Placement co-ordinator before submitting to CoE.					

SEE: NA

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	1					1		1	1	1	2	1
CO2	1	2	2					1	2	1	2	1
CO3			3			1		2	1	2	1	
CO4						1	3	1	1	1	1	

Low-1 Medium-2 High-3

	Semester: IV						
	BRIDGE COURSE MATHEMATICS III / IV						
Cou	Course Code:16DMA37/48 CIE Marks: 100						
Cre	dits: L:T:P:S: 2:0:0:0	SEE Marks	: 100				
Aud	lit Course	SEE Duration	on: 03Hrs				
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand the existence of polar coordinates as possible 2 - D geometry, approximate						
	function of single variable in terms of infinite series.						
2	2 Gain knowledge of multivariate functions, types of derivatives involved with these functions						
	and their applications.						
3	3 Recognize linear differential equations, apply analytical techniques to compute solutions.						
4	Acquire concepts of vector functions, v	ector fields and differential calculus	of vector functions				
	in Cartesian coordinates.						

5 Explore the possibility of finding approximate solutions using numerical methods in the absence of analytical solutions of various systems of equations.

Prerequisites :

Hyperbolic functions, Trigonometric formulas, methods of differentiation, methods of integration, reduction formulae, vector algebra.

UNIT-I			
Differential Calculus:	05		
Taylor and Maclaurin's series for function of single variable. Partial derivatives –	Hrs		
Introduction, simple problems. Total derivative, Composite functions, Jacobian's-			
simple problems.			
UNIT-II			
Multiple Integrals:	05		
Evaluation of double and triple integrals – direct problems, change of order in double	Hrs		
integral, change of variables to polar, cylindrical and spherical coordinate systems.			
UNIT-III			
Differential Equations:	06		
Higher order linear differential equations with constant coefficients, Complementary	Hrs		
function and Particular integral, problems. Equations with variable coefficients – Cauchy			
and Legendre differential equations, problems.			
UNIT-IV			
Vector Differentiation:	05		
Introduction, simple problems in terms of velocity and acceleration. Concepts of Gradient,	Hrs		
Divergence- solenoidal vector function, Curl- irrotational vector function and Laplacian,			
simple problems.			
UNIT-V			
Numerical Methods:	05		
Algebraic and transcendental equations – Regula-Falsi method, Newton-Raphson	Hrs		
method.			
Ordinary Differential Equations – Taylor's, modified Euler's and 4 th order Runge-			
Kutta methods. Numerical Integration – Simpson's 1/3 rd , 3/8 th and Weddle's rules.			

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the understanding of the basics of polar coordinates, partial
:	differentiation, multiple integrals, vector differentiation, classification and types of
	solutions of higher order linear differential equations, requirement of numerical
	methods and few basic definitions.
CO2	Solve problems on total derivatives of implicit functions, double integrals by
:	changing order of integration, homogeneous linear differential equations, velocity
	and acceleration vectors.
CO3	Apply acquired knowledge to find infinite series form of functions, multiple
:	integrals by changing order, solution of non-homogeneous linear differential
	equations, and numerical solution of equations.
CO4	Evaluate multiple integrals by changing variables, different operations using del
:	operator and numerical solutions of differential equations and numerical
	integration.

Reference Books	
1.	Higher Engineering Mathematics, B.S. Grewal, 40 th Edition, Khanna Publishers, 2007,
	ISBN: 81-7409-195-5.
2.	Advanced Engineering Mathematics, R. K. Jain & S.R.K. Iyengar, Narosa Publishing
	House, 2002, ISBN: 817-3-19-420-3. Chapters: 1, 2, 8, 15.
3.	Advanced Engineering Mathematics, Erwin Kreyszig, 9th Edition, John Wiley &
	Sons, 2007, ISBN: 978-81-265-3135-6. Chapters: 6, 10, 12.
4.	A Text Book of Engineering Mathematics, N.P Bali & Manish Goyal, 7 th Edition,
	Lakshmi Publications, 2010, ISBN: 978-81-7008-992-6. Chapters: 6, 18, 16, 8, 26.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE consists of Two Tests each for 50 marks (20 marks for Quiz + 30 marks for descriptive questions)

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from each unit have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Curriculum Design Process

Academic Planning and Implementation

PROCESS FOR COURSE OUTCOME ATTAINMENT

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (PO)

PO1: **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: **Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5:**Modern tool usage** : Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6:**The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10:**Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.