R. V. COLLEGE OF ENGINEERING, BENGALURU – 59

(An Autonomous Institution affiliated to VTU, Belagavi)

DEPARTMENT OF MECHANICAL ENGINEERING SCHEME OF TEACHING AND EXAMINATION

	THIRD SEMESTER							
Sl.	0				Credit A	llocation		Total
No.	Course Code	Course Title	BoS	Lecture	Tutorial	Practical	SS (EL)	Credits
1	16MA31C	Applied Mathematics-III	Maths	3	1	0	0	4
2	16EM32B	Engineering Materials [#]	ME	2	0	0	0	2
3	16ME33	Mechanics of Materials	ME	3	0	1	1	5
4	16ME34	Thermal Engineering I	ME	3	1	0	1	5
5	16ME35	Fluid Mechanics	ME	3	0	0	1	4
6	16ME36	Manufacturing Processes - I	ME	3	0	1	1	5
7	16DMA37	Bridge Course Mathematics*	Maths	2	0	0	0	0
		Total No. of Credits						25
		No. of Hrs.		19	2	4	16**	42

*Mandatory Audit course for lateral entry diploma students

**Non-contact hours

#ME/IM/AS Common #EC/TC/EE/EI Common ## CS/IS/BT Common

1Hr. Theory = 1 credit

2Hrs. Practical = 1credit

it 2 Hrs. Tutorial = 1 credit

4 Hrs. SS (EL) = 1 Credit

R. V. COLLEGE OF ENGINEERING, BENGALURU – 59

(An Autonomous Institution affiliated to VTU, Belagavi)

DEPARTMENT OF MECHANICAL ENGINEERING SCHEME OF TEACHING AND EXAMINATION

	FOURTH SEMESTER							
Sl.					Credit Allo	cation		Total
No	Course Code	Course Title	BOS	Lecture	Lecture Tutorial		SS (EL)	Credits
1	16MA41C	Applied Mathematics - IV	Maths	3	1	0	0	4
2	16ET42	Environmental Technology [#]	BT	2	0	0	0	2
3	16ME43	Metrology and Measurements	ME	3	0	1	1	5
4	16ME44	Kinematics of Machines	ME	3	0	0	1	4
5	16ME45	Thermal Engineering II	ME	3	1	1	0	5
6	16ME46	Manufacturing Processes II	ME	3	0	1	1	5
7	16HS47	Professional Practice-II (Team Work & Professional Ethics)\$	HSS	0	0	0	0	1
8	16DCS48	Bridge Course C Programming [*]	CSE	2	0	0	0	0
		Total No. of Credits						26
		No. Of Hrs.		19	2	6	12**	39

*Mandatory Audit course for lateral entry diploma students **Non contact hours \$ 3 days (18 Hrs) in 3rd semester and 3 days (18 Hrs) in 4th semester, in the event of student not able to take the regular allotment, may have to complete this credit by attending other branch program.

[#] BT, CV, CH, Chemistry will handle classes

1 Hr. Theory = 1 credit

2 Hrs. Practical = 1 credit 2 Hrs. Tutorial = 1 credit

4 Hrs. SS (EL) = 1 Credit

	Semester: III						
	Course Title: APPLIED MATHEMATICS – III						
Cou	Course Code: 16MA31 CIE Marks: 100						
Hrs	/Week: L:T:P:S:	3:1:0:0	SEE Marks: 100				
Cre	Credits: 4 SEE Duration: 3Hrs						
Course Learning Objectives: The students should be able to:							
1	Identify and solve initial value problems, physically interpret the solution, using						
1	Laplace Transforms and Inverse Laplace transforms						
2	Evaluate extremal of integrals inv	volving functionals	with applications to physical				
4	situations						
3	Understand the basics of Matrix	k theory, Eigen v	alues and Eigen vectors, its				
3	applications for finding solution of system of linear equations						
4	Analyze the given set of experiment	tal data and fit suital	ble approximating curves				

UNIT-I	
LAPLACE TRANSFORM	08 Hrs
Existence and uniqueness of Laplace Transform (LT), Transform of elementary	
functions, RoC. Properties of LT: Linearity, change of scale and first shifting.	
Transform of function multiplied by t ⁿ , division by t, derivatives and integral. LT	
of periodic function, Heaviside unit step function, Unit impulse function.	
Heaviside shift (second shift) theorem	
UNIT-II	
INVERSE LAPLACE TRANSFORM	08 Hrs
Definition, properties of inverse Laplace transform, evaluation using different	
methods. Convolution theorem, problems. Application to solve ordinary linear	
differential equations and simultaneous differential equations	
UNIT-III	
CALCULUS OF VARIATION	08 Hrs
Introduction of variation of functions, extremal of a functional, Euler's equation-	
special cases-problems. Geodesics-problems, Hanging cable problem,	
Brachistochrome problem	
UNIT-IV	
LINEAR ALGEBRA	08 Hrs
Rank of matrices-rank of matrix by Echelon form, consistency of system of linear	
equations- homogeneous and non-homogeneous equations, Gauss elimination,	
Gauss Jordan, Gauss Seidel methods, Eigen values and Eigen vectors-properties,	
largest Eigen value by Power method	
UNIT-V	
STATISTICS	08 Hrs
Curve fitting by method of least squares, fitting of curves-linear, parabolic,	
exponential, power functions, correlation, and Regression analysis – problems	

Course Outcomes: After completing the course, the students will be able to

1	Understand the fundamental concepts of Laplace and inverse Laplace transforms,
	variation of functions, elementary transformation of matrices, method of least squares
2	Demonstrate the properties of Laplace and inverse Laplace transforms, knowledge of
	extremal of functional, Eigen values, Eigen vectors and correlation
3	Apply Laplace and inverse Laplace transform technique to solve differential equations,
	Euler's equation to solve variational problems, matrix methods to solve system of linear
	equations, regression analysis for curve fitting

4 Analyse and interpret- solution of IVP and BVP, solution of functionals, solution of linear systems, and statistical dataoccurring in Engineering problems

- **1.** B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 40th Edition, 2007, ISBN: 81-7409-195-5
- **2.** B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2008, ISBN: 13-978-07-063419-0; ISBN: 10-0-07-063419-X
- **3.** Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9th Edition, 2007, ISBN: 978-81-265-3135-6
- **4.** Introduction to Probability and Statistics by Lipshutz and Schiller(Schaum's outline series), ISBN:0-07-038084-8

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)			
Evaluation method	Course with Assignment/		
	Self-study		
Quiz -1	10		
Test -1	30		
Quiz -2	10		
Quiz -3	10		
Test -2	30		
Assignments	10		
Total	100		

Semester End Evaluation	
Theory (100)	
Part- –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.	
Total	100

		What		Frequency of conduction	Max Marks	Evidence		Contribution to Course Outcome	
ds		Quiz	-	Three	30	Answer			
ho		Test		Two	60/50	Scripts			
ent Met	CIE	Assignment/Self- study		2 phases	10/20	Reports / Record Books	80%		90%
Direct Assessment Methods	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%	100%	
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	Μ										L
CO2	Η	Μ										L
CO3	L	Μ	Μ									L
CO4		L	L	Η								L

	Semester: III						
	Course Title: ENGINEERING MATERIALS						
Cou	Course Code:16EM32BCIE Marks: 50						
Hrs	s/Week: L:T:P:S:	2:0:0:0	SEE Marks: 50				
Credits: 2 SEE Duration: 2 Hrs							
Cou	rse Learning Objectives: The st	udents should be a	ble to				
1	Familiarize with atomic structure of metals, imperfections, diffusion mechanisms and theories of plastic deformation						
2	Construct phase diagram of diffe	erent alloy system					
3	Differentiate between steel and o	cast iron with the hel	lp of Iron carbon Diagram				
4	Explain Time Temperature Transformation diagram and different types of heat treatment processes						
5	Explain composition, properties	and application of f	errous and non-ferrous materials				
6	Explain concept of corrosion in	materials and their	prevention				
7	Select materials for automotive, aerospace, marine and domestic applications						

UNIT-I	
Crystallography, defects in materials and deformation:	06 Hrs
Crystal structure - BCC, FCC and HCP structures - Unit cell - Crystallographic	
planes and directions, Miller indices. Crystal imperfections, point, line, planar	
and volume defects - Grain size, ASTM grain size number. Frank Reed source of	
dislocation, Elastic and Plastic deformation, Slip and Twinning, strain hardening	
and Bauschinger effect	
UNIT-II	
Alloys and Phase Diagrams: Constitution of alloys - solid solutions -	04 Hrs
Substitutional and Interstitial	
Phase diagrams - construction of isomorphus phase diagram, Lever rule, Iron-	
Iron carbide equilibrium diagram, different types of invariant reactions, slow	
cooling of steels	
UNIT-III	
Heat Treatment: Full annealing, Stress relief annealing, Normalizing, Hardening	06 Hrs
and Tempering of steel. Isothermal transformation diagram of eutectoid steel -	
cooling curves imposed on I.T diagram, Critical cooling rate, Hardenability,	
Jomminy end quench test - austempering, martempering, case hardening,	
carburising, nitriding, cyaniding. Flame and Induction hardening.	
UNIT-IV	
Ferrous and Non Ferrous Metals: Alloying of steel (Mn, Si, Cr, Mo, V, Ti and	04 Hrs
W) - stainless steels and tool steels - High Speed Low alloy (HSLA). Cast Iron-	
Gray, white, malleable, spheroidal, graphite cast iron.	
Composition, Properties and applications of Copper and Copper alloys-Brass and	
Bronze, Aluminium and Aluminium alloys, Titanium and Titanium alloys.	
UNIT-V	
Corrosion: Types of corrosion- Galvanic corrosion, Pitting corrosion, Erosion	04 Hrs
corrosion, Crevice corrosion; intergranular and transgranular corrosion, hydrogen	
cracking and embrittlement, corrosion prevention.	
Materials for Automotive, aerospace, marine and domestic applications.	

Course Outcomes: After completing the course, the students will be able to					
1	Understand the concepts of crystal structure, microstructure and deformation. (L1- L2)				
2	Construct phase diagram of alloy systems and Iron Carbon phase diagram. (L3)				

	3	Develop TTT diagram (L4)
--	---	--------------------------

4 Select ferrous and Non-ferrous materials and their alloys for different application. (L5)

- 1. William F Smith., 'Material Science and Engineering', Tata McGraw Hill, 4th Edition, 2008, ISBN-(13 digits): 978-0-07-066717-4; ISBN-(10 digits):0-07-066717-9
- Sidney H Avner., 'Introduction to Physical Metallurgy', Tata McGraw Hill, 1997, ISBN-(13 digits): 978-0-07-463006-8; ISBN-(10 digits): 0-07-463006-7
- **3.** William D. Callister, Jr., 'Materials Science and Engineering An Introduction', John Wiley and Sons, Inc., 6th Edition, 2004, ISBN: 9812-53-052-5

Continuous Internal Evaluation (CIE) (Theory – 50 Marks)								
Evaluation method	Course with Assignment/ Self-study							
Quiz -1	5							
Test -1	20							
Quiz -2	5							
Test -2	20							
Total	50							

Semester End Evaluation	
Theory (50)	
Part- –A	10
Objective type questions	10
Part –B	
There should be five questions from five units. Each question should be for maximum	
of Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	40
Both the questions should be of the same complexity in terms of COs and Bloom's	
taxonomy level.	
Total	50

	What				To whom	Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
ent s	CIE Quiz Test			Two Two	20 30/20	Answer Scripts	80%				
Direct Assessment Methods	SEE	Semester End Exam	Students	Consisting of Part-A and Part-B	50/20	Answer Scripts	20%	100%	90%		
Indirect Assessment methods			Students	End of course		Questionnaire Based on Cos		10%			

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Η	L				Μ					L
CO2	Н	Η	L							L		
CO3	Μ	Н			Μ							
CO4		Η	L			Μ						L

	Semester: III										
	Course Title: MECHANICS OF MATERIALS										
Cot	Course Code: 16ME33 CIE Marks: 100 + 50										
Hrs	/Week: L:T:P:S:	3:0:2:4	SEE Marks: 100 + 50								
Cre	edits:	5	SEE Duration: 3+ 3 Hrs								
Cot	rse Learning Objectives: The	e students should be a	able to								
1	Understand mechanics of defe	ormable bodies and ap	ply them in analysis and design								
1	problems										
2	Analyze bodies subjected to t	wo dimensional stress	systems.								
3	Understand behaviorof struct	ural members in flexu	re and Torsion.								
4	Evaluate slope and deflection in beams subjected to loading.										
5	Understand stability of columns and struts.										
6	Predict the stress distribution in beams, pressure vessels and shafts										

PART A					
UNIT-I					
 Review of stress, strain & Elastic Constants: Stress, Strain, relationship among elastic constants, Volumetric strain. (No questions to be set on these topics) Thermal stresses and strains (compound bars not included). Numerical problems Two Dimensional Stress System: Introduction, Stress components on inclined planes, Principal Stresses, Principal planes, Mohr's circle of stress Numerical problems 					
UNIT-II					
 Bending moment and shear force in beams : Introduction, Types of beams, Loads and Reactions, Shear forces and bending moments, Rate of loading, Sign conventions, Relationship between shear force and bending moments, Shear force and bending moment diagrams subjected to concentrated loads, uniform distributed load (UDL) for different types of beams.(UVL not included) Bending stress in beams: Introduction, Assumptions in simple bending theory, Derivation of Bernoulli's equation, Modulus of rupture, Section modulus, Flexural rigidity, Bending stress distribution in beams of various sections, Beam of uniform strength (No numerical on beam of uniform strength) Shear stresses in beams: Expression for horizontal shear stress in beam, Shear stress diagram for simple rectangular and I section and T sections only. Numerical problems. 	10 Hrs				
UNIT-III					
Deflection of determinate Beams: Introduction, Definitions of slope, Deflection, Elastic curve, Derivation of differential equation of flexure, Sign convention, Double integration method, Slope and deflection using Macaulay's method for prismatic beams and overhanging beams subjected to point loads, UDL and couple. Numerical problems. Thick and thin cylinders: Stresses in thin cylinders, Changes in dimensions of	10 Hrs				
cylinder(diameter, length and volume), Thick cylinders subjected to internal and					
external pressures (Lame's equation), (Compound cylinders not included).					
UNIT-IV					
Torsion of shafts : Assumptions in theory of pure torsion, Torsion equations, Torsional rigidity and modulus of rupture, Power transmitted, Comparison of solid and hollow circular shafts. Numerical problems.	04 Hrs				
UNIT-V					

Analysis of columns and struts: Introduction, Euler's theory on columns, Effective length, Slenderness ratio, Short and long columns, Radius of gyration, Buckling load, Assumptions, Derivation of Euler's Buckling load for different end conditions, Limitations of Euler's theory, Rankine's formula. Numerical problems.

PART – B MECHANICS OF MATERIALS LABORATORY

Section I

1. Hardness Tests (Brinell, Rockwell, Vicker)

12Hrs

4Hrs

- 2. Tension test on Mild steel and HYSD (High Yield Strength Deformed) bars
- 3. Compression test of Mild Steel, HYSD, Cast iron.
- 4. Torsion test on Mild Steel circular sections.
- 5. Bending Test on Wood Under two point loading.
- 6. Shear Test on Mild steel.
- 7. Impact test on Mild Steel (Charpy & Izod)
- 8. Wear Test using Pin on disc Tribometer

Section – II (Non-destructive testing)

- 1. Magnetic Particle Test
- 2. Ultrasonic Test
- 3. Dye Penetrant Test
- 4. Eddy current inspection for metals

Course Outcomes: After completing the course, the students will be able to

- 1 Identify the different engineering materials, describe their properties and predict their behaviour under different types of loading
- 2 Compute the stresses, strains, moments, deflections, etc. and derive the expressions used from the fundamentals.
- 3 Select materials, sizes and sections for various applications such as beams, shafts, pressure vessels, columns, etc. and justify the selection
- 4 Determine mechanical properties by destructive and non-destructive methods

- 1. S.S. Bhavikatti, Strength of Materials, Vikas Publications House Pvt. Ltd. New Delhi,2012, ISBN 9788125927914
- 2. Timoshenko and Young "Elements of Strength of Materials", Affliated East-West Press, 1976 Edition, ISBN-10: 0442085478, ISBN-13: 978-0442085476.
- **3.** F.P. Beer and R. Johnston, "Mechanics of Materials", McGraw-Hill Publishers,2006 ISBN 9780073529387
- **4.** S. Ramamrutham, R. Narayanan, "Strength of Materials", Dhanapath Rai Publishing Company, New Delhi, 2012, ISBN: 818743354X

	Continuous Inte	ernal Evaluation (CIE)		
(Theory – 10	0 Marks)	(Laboratory- 50 Marks)	Total	
Evaluation method	Course with assignment			(150)
Quiz -1	10	Performance of the student in		
Test -1	30	the laboratory, every week	40	
Quiz -2	10			
Quiz -3	10	Test at the end of the semester	10	
Test -2	30		10	
Assignments	10			
Total	100	Total	50	150

Semester End Ev	aluatio	n (SEE)			
Theory (100 Marks)	Laboratory(50 M	Laboratory(50 Marks)			
Part- –A	20	Experiment			
Objective type questions		Conduction with	40		
Part –B		proper results			
There should be five questions from five units.		Viva	10		
Each question should be for maximum of 16					
Marks.					
The UNIT-1, UNIT-4 and UNIT-5 should not	80				
have any choice.					
The UNIT-2 and UNIT-3 should have an internal					
choice.					
Both the questions should be of the same					
complexity in terms of COs and Bloom's					
taxonomy level.					
Total	100	Total	50	150	

	What		To whom	Frequency of conductio n	Max Mark s	Evidence		tributio rse Outo	
		Quiz		Three	30	Answer			
ds		Test		Two	60/50	Scripts	80		
Aetho	CIE	Assignment/Self -study		2 phases	10/20	Reports / Record	80 %		
lt N		Laboratory		Weekly	50	Books			
Direct Assessment Methods	SE	Semester End Examination	Student s	Consisting of Part-A and Part-B	100	Answer	20	100 %	90 %
Direct /	Е	Semester End Laboratory		End of every semester laboratory	50	Scripts	%		
Indirect Assessment methods	sport Course End Survey		Student s	End of course		Questionnair e Based on COs		10%	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Н	Μ									
CO2			Η									
CO3		Μ			Η					L		
CO4			Н						Μ			

Semester: III										
Course Title: THERMAL ENGINEERING – I										
Course Code: 16ME34 CIE Marks: 100										
Hrs	/Week: L:T:P:S:	3:1:0:4	SEE Marks: 100							
Cre	dits:	5	SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The stude	ents should be	able to:							
1	1 Familiarize with various definitions involved in thermodynamics.									
2	Define and differentiate between thermodynamic work and heat.									
3	Apply first law of thermodynamics	to various proce	esses.							
4	Demonstrate the skills to explain co	orollaries of seco	ond Law of thermodynamics.							
5	Explain the concept of Entropy and	the principle of	f increase of Entropy.							
6	Apply thermodynamic laws to stear	n processes.								
7	Understand the behavior of pure substances with the help of property diagrams									
8										

UNIT-I

UNIT-I		
Fundamental Concepts and Definitions: Macroscopic and Microscopic point	06 Hrs	
of view -Thermodynamic systems, surroundings and boundary -		
Thermodynamic property, Intensive and Extensive properties - Thermodynamic		
state, process, cycle, path and point functions -Quasi-static process,		
Thermodynamic equilibrium – adiabatic and diathermic walls		
Temperature: Equality of temperature - Zeroth law of thermodynamics-		
thermometry -Temperature scales-International temperature scale		
UNIT-II		
Thermodynamic Work and Heat: Thermodynamic work, work done in a	07 Hrs	
frictionless quasi-equilibrium process - pdv work in various quasi-static		
processes - other types of work transfer – Heat, comparison of heat and work.		
First Law of Thermodynamics: First law of thermodynamics for a system		
undergoing thermodynamic cycle - First law of thermodynamics for closed		
system – Perpetual Motion Machine of kind I – Internal energy - property of the		
system – Enthalpy – Application of first law of thermodynamics to steady flow		
processes, Steady flow energy equation applied to different flow systems		
UNIT-III		
Second Law of Thermodynamics: Limitations of first law of	07 Hrs	
thermodynamics – Thermal reservoirs – Heat engines, Refrigerator and Heat		
pump – Statements of second law of thermodynamics – Equivalence of Kelvin		
Planck and Clausius statements – Perpetual Motion Machine of kind II		
Reversible and Irreversible Processes – Carnot cycle – Corollaries of Second		
law of thermodynamics, Absolute thermodynamic temperature scale		
UNIT-IV		
Entropy: Clausius Inequality, Entropy - a property of a system, Principle of	06 Hrs	
increase of entropy - The combined first and second law (T-ds equations) -		
Change of entropy for different processes of Ideal gas		
Available and Unavailable energy: Available energy referred to a cycle,		
Decrease in available energy when heat is transferred through a finite		
temperature difference, Availability in non-flow systems, Availability in steady		
flow systems, Helmholtz and Gibb's functions, Maximum work in a reversible		
process, Useful work, Dead state, Gouy-Stodola theorem, Second law efficiency		
UNIT-V		
Pure Substance: Steam and its properties –Gibbs phase rule, Two property	07 Hrs	

rule, Formation of steam, p-v, p-T, T-s and h-s diagrams for a pure substance, Introduction to steam tables and charts– Measurement of dryness fraction, Throttling and combined calorimeters Ideal Gases: Mixture of ideal gases and real gases – Ideal gas equation, Relation between properties of an Ideal gas – mixture – pvt behaviour of an Ideal gas – Deviation of Ideal gas – Real gases– Vander waal's equation of state – compressibility factor, Use of compressibility charts	
Experiential Learning (Suggestive):	4
Modeling (Prototyping) of thermodynamic systems, Industry based case studies,	Hrs/Week
Internship, Survey of Areas pertaining to thermal systems, innovative projects	
related to energy, state-of-the-art in emerging areas related to thermal engineering	

Course Outcomes: After completing the course, the students will be able to

1	Define	and	Explain	basic	concepts,	properties	of	substances	and	Laws	of
	thermod	lynam	ics (L1- L	.2)							

- 2 Apply the Laws of Thermodynamics for analyzing thermodynamic processes / cycles (L3)
- 3 Analyse thermodynamic processes for heat and work transfer (L4)
- 4 Adapt knowledge of thermodynamics to suggest solutions for thermodynamic problems (L6)

1.	Nag P. K., 'Engineering Thermodynamics', Tata McGraw Hill, 4 th Edition, 2011,	
	ISBN-13:978-0-07-026062-7: ISBN-10:0-07-026062-1	

- **2.** Yunus A Cengel and Boles M.A., 'Thermodynamics', 7th Edition, Tata McGraw Hill, 2009, ISBN-13:978-0-07-107254-0; ISBN-10:0-07-107254-3
- **3.** R.E Sonntag, C. Borgnakke and G.J. Van Wylen, 'Fundamentals of Thermodynamics', John Wiley, 2003; ISBN:0-471-15232-3
- **4.** Rajput, R.K., 'Engineering Thermodynamics', Laxmi Publications Pvt. Ltd., 3rd Edition, 2007; ISBN: 978-0-7637-8272-6

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)				
Evaluation method	Course with Assignment/ Self-study			
Quiz -1	10			
Test -1	25			
Quiz -2	10			
Quiz -3	10			
Test -2	25			
Self-study (EL)	20			
Total	100			

Semester End Evaluation Theory (100)	
Part –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's	

taxonomy level.

Total

		What	To whom	Frequency of conduction	Max Marks	Evidence		tributio	
ds		Quiz		Three	30	Answer			
ho		Test		Two	60/50	Scripts			
ent Met	CIE	Assignment/Self- study	2 phases		10/20	Reports / Record Books	80%		
Direct Assessment Methods	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%	100%	90%
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	Μ		L	Μ							
CO2	Η	Μ		L	Μ							
CO3	Н	L		Μ	L							
CO4	Η	Μ		Μ	L							

Low-1 Medium-2 High-3

100

	Semester: III							
	Course Title: FLUID MECHANICS							
Course Code: 16ME35 CIE Marks: 100								
Hrs	/Week: L:T:P:S:	3:0:0:4	SEE Marks: 100					
Credits: 4 SEE Duration: 3Hrs								
Cou	Course Learning Objectives: The students will be able to							
1	1 Understand fundamentals of fluid mechanics							
2	Measure pressure and determine hydrostatic forces							
2	Apply laws of conservation of momentum, mass and energy to fluid flow systems and							
3	3 Appry laws of conservation of momentum, mass and energy to find how systems and explain the measurement of fluid flow parameters							
4	4 Investigate the characteristics of flow though pipes							
5	5 Interpret compressibility of gases in terms of Mach number							
6	Apply dimensional analysis and similarity laws for conducting model tests							

UNIT-I				
Basic Concepts and Fluid Properties: Definition of a fluid; Classification of	05 Hrs			
fluid flows; No slip condition; System and control volume; Continuum. Density,				
Specific gravity, Vapour pressure, Viscosity, Surface Tension; Coefficient of				
compression, Effects of Cavitation and Capillarity				
Review of Vector Relations: Dot product, Cross product, Gradient, Divergence,				
Curl and their physical significance from fluid mechanics point of view. Line				
Integrals, Surface Integrals and Volume Integrals				
Dimensional Analysis and Modeling: Similitude; Geometric, Kinematic and				
Dynamic similarities; Buckingham pi theorem and its application to fluid				
mechanics problems; Dimensionless numbers; Model studies				
UNIT-II				
Pressure and Fluid Statics: Pressure at a point; Pressure variation with depth;	08 Hrs			
Manometer and other pressure measuring devices; Barometer and atmospheric				
pressures; Hydrostatic forces on submerged plane and curved surfaces				
Buoyancy and Stability: Stability of floating bodies, Meta centre and Meta				
centric height; experimental and analytical determination of meta centric height;				
stability of submerged bodies				
UNIT-III				
Fluid Kinematics: Lagrangian and Eulerian descriptions; Fundamentals of flow	06 Hrs			
visualization; Stream line, Stream tube, Path line and Streak line; Stream				
function, Velocity potential, Circulation, Vorticity and Rotationality				
Potential Flows: Uniform flow, Source flow, Sink flow, Combination of				
uniform flow with a source and sink, Doublet flow, Non-lifting flow over a				
circular cylinder and vortex flow				
UNIT-IV				
Fluid Dynamics: General continuity equation in Cartesian coordinates; Euler's	08 Hrs			
equation; Bernoulli's equation, Limitations of Bernoulli's equation, Applications				
of Bernoulli's equation; Venturimeter, Orifice Meter, Notches - V notch,				
Rectangular notch, Pitot tube and Pitot Static tube. Static, Dynamic and				
Stagnation pressures				
Flow through Pipes: Darcy-Weisbach equation; Chezy's formula; Laminar				
flow through pipes; Hagen-Poiseulle equation; Friction factor, Minor losses.				
Turbulent Flow through Pipes: Characteristics of turbulent flow; Turbulent				
velocity profile; Turbulent shear stress; Moody's chart				

UNIT-V

Introduction to Compressible Flow: Propagation of pressure waves in a	06 Hrs
compressible medium; Velocity of sound, Mach number, Mach cone; Stagnation	
properties; Bernoulli's equation for isothermal and adiabatic flows	
Introduction to Boundary Layer Theory: Flow over a flat plate: Boundary	
layer thickness, Displacement, Momentum and Energy thickness	
Flow over submerged bodies: Introduction, Lift and Drag forces with their	
expression, Coefficient of lift and Coefficient of drag	
Experiential Learning:	4
Case studies, Design and Emerging technologies to be discussed pertaining to	Hrs/week
the course	

Course Outcomes: After completing the course, the students will be able to:

- 1 Describe properties of fluids for analysing fluid flow applications
- 2 Analyse effect of fluid properties on static and dynamics of fluid flow
- 3 Analyze hydrostatic and dynamic solutions for fluid flow applications
- 4 Derive appropriate formulae for specific industrial fluid problems

- 1. Yunus A. Cengel and John M. Cimbala, Fluid Mechanics, Tata Mc-Graw Hill, 2006; ISBN: 9780071284219
- 2. Modi and Seth, Fluid Mechanics and Hydraulic Machines, Standard Book House, 2007; ISBN -81-7867-023-2
- **3.** K. Subramanya, Theory and Application of Fluid Mechanics, TMH Outline Series, 1993; ISBN-13: 978-0-07-460369-7, ISBN: 0-07-460369-8
- 4. R. K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publications Pvt. Ltd., 2009; ISBN-13: 978-81-318-0661-6

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)				
Evaluation method	Course with Assignment / Self-study			
Quiz -1	10			
Test -1	25			
Quiz -2	10			
Quiz -3	10			
Test -2	25			
Self-study (EL)	20			
Total	100			

Semester End Evaluation Theory (100)				
Part –A	20			
Objective type questions	20			
Part –B				
There should be five questions from five units. Each question should be for maximum of 16 Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.				
The UNIT-2 and UNIT-3 should have an internal choice.	80			
Both the questions should be of the same complexity in terms of COs and Bloom's	50			

taxonomy level.

Total

	What		To whom	Frequency of conduction	Max Marks	Evidence	Contribution Course Outco		
ds		Quiz		Three	30	Answer			
ho		Test		Two	60/50	Scripts	20%	100%	
Direct Assessment Methods	CIE	Assignment/Self- study		2 phases	10/20	Reports / Record Books			
	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts			90%
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Η	Η		Μ								
CO2	Η	Η	Μ	Μ	L							
CO3	Н	Н	Μ	L	L							
CO4	Η	Η	Μ	L								Μ

Low-1 Medium-2 High-3

100

Semester: III								
	Course Title: MANUFACTURING PROCESSES – I							
Cou	rse Code:	16ME36	CIE Marks: 100 + 50					
Hrs	/Week: L:T:P:S:	3:0:2:4	SEE Marks: 100 + 50					
Credits: 5			SEE Duration: 3 + 3 Hrs					
Cou	rse Learning Objectives: The stud	ents should be	able to					
1	Classify manufacturing processes;	understand the	significance and steps involved in					
L	metal casting processes							
2	Design, analyze gating systems	for casting and	d explain different special casting					
2	2 processes							
3	Understand and apply principles co	oncerned with m	etal forming processes to solve real					
3	time forming problems.							
4	Identify, evaluate different sheet	metal forming	operations, sheet metal dies, arc					
4	welding processes and welding defects.							

PART A					
UNIT-I					
Manufacturing processes: Classification of Manufacturing Processes	06 Hrs				
Metal-Casting Processes: Advantages, Limitations and Applications. Patterns					
-Pattern allowances, Core prints, Types of patterns. Types of moulding sands -					
Properties of moulding sands. Types of Sand Moulds -Green-sand, Dry-sand					
and Skin-dried moulds					
Moulding Machines: Jolting, Squeezing, Jolt & Squeezing and Sand Slinging.					
Cores -Functions and Desired Characteristics of Cores, Core sands, Types of					
Cores, Core Prints and Chaplets					
UNIT-II					
Gating and Riser Design for Casting: Elements of Gating System, Types of	07 Hrs				
Gates and gating systems. Gating – System Design: Pouring time calculations					
- Top Gating, Bottom Gating and Relation (condition) to Avoid Aspiration					
Effect (Derivations and Numericals)					
Design of Risers: Types of Risers, Directional Solidification					
Solidification Time of Casting – Chvorinov's Rule and Caine's method					
(Numericals)					
Special Casting Processes:CO ₂ Moulding, Shell Moulding, Investment Casting,					
Die Casting – Hot and Cold Chamber Processes; Centrifugal casting;					
Continuous Casting					
Casting Defects – Types, Causes and Remedies					
UNIT-III					
Metal Forming: Classification of Metal Forming Operations.	07 Hrs				
Forging: Processes and operations, Lubrication in Metal Forming Operations.					
Forces and Stresses during Forging- Analysis of Pressure distribution in					
Rectangular Block under Sticking, Sliding and Mixed Friction Condition.					
(Simple Numericals)					
Extrusion: Direct and Indirect Extrusion, Impact Extrusion, Hydrostatic					
Extrusion, Defects in Extruded Products.					
Drawing: Wire drawing, Rod and Tube Drawing.					
UNIT-IV					
Rolling: Types of Rolling mills and Defects in Rolling.	06 Hrs				
Flat Rolling and Terminology – Draft (Reduction), Forward and Backward					
Slip, Roll strip contact length, Bite angle, Ragging, Neutral Plane and Angle of					

Nip (Simple Numericals)	
Sheet Metal Forming: Classification of press tool operations; Punch and Die	
Clearances, Ironing, Coining and Embossing, Lancing, Twisting, Spinning,	
Stretch forming	
Sheet Metal Drawing – Drawing, Cupping and Deep drawing	
Draw Die Design –Factors considered for designing a Draw Die (Simple	
Numericals). Defects in drawing.	
Sheet Metal Dies – Progressive, Compound and Combination Dies. Bending	
and Bending Allowance, Rubber Forming.	
UNIT-V	
Electric Arc Welding: Introduction, Characteristic curves of constant-current	07 Hrs
and constant voltage, arc welding transformer (Simple Numericals);	
Electrodes – consumable and non-consumable electrodes, Functions of coatings	
on the electrodes, Arc blow.	
Arc Welding Processes – Shielded metal arc welding (SMAW), Inert Gas Arc	
Welding – Tungsten Inert Gas (TIG) welding and Metal Inert Gas (MIG) arc	
welding, Submerged arc welding (SAW), Atomic Hydrogen welding (AHW),	
Plasma arc welding (PAW).	
Resistance welding: Principle and types of resistance welding.	
Metallurgy of Arc welding: Principal zones in the joint and typical grain	
structure, Welding defects.	
Experiential Learning component:	4
Prototyping of metal casting, forming and welding systems, Industry based	Hrs/Week
cases studies, survey of areas pertaining to manufacturing, Innovative projects	
related to manufacturing processes.	

PART	– B
MACHINE	SHOP I
PART I	12Hrs
Foundry Practice:	
1. Use of foundry tools and other equipment.	
2. Preparation of sand moulds using two mou	lding boxes – with patterns and without
patterns (Split pattern, Match plate patter a	,
3. Demonstration of casting process (Alumini	um or Cast iron).
PART – II	08Hrs
Testing of Moulding Sand and Core Sand:	
Preparation of Moulding sand and performing for	ollowing tests:
Compression and Shear Tests using Sand T	esting Machine
Permeability Test	
Grain Fineness number test (Sieve Analysis	s Test).
• Clay content Test.	
• Moisture content test.	
Welding Practice:	
1. Butt Joint	
2. Lap Joint	
3. Corner Joint	
Forging:	
Demonstration of Forging process using Power	Hammer – Making Square Rod from a
Round Rod.	

Co	Course Outcomes: After completing the course, the students will be able to							
1	Define the terms related to metal casting, metal Forming, Welding and summarize							
	various processes. (L1&L2)							
2	Analyse and Apply Principles of Casting, Forming and Welding to specific							
	applications. (L3&L4)							
3	Assess, Compare and Select appropriate Manufacturing Processes (L5)							
4	Adapt the Principles of Casting, Forming, Welding and Develop the Mechanical							
	Components (L6)							

- P N Rao, Manufacturing Technology Foundry, Forming, and Welding, 4th edition, McGraw Hill Education (India) Private Limited, 2013, ISBN-13: 978-1-25-9606257-5 and ISBN-10: 1-25-906257-0
- **2.** Mikell P. Groover, "Fundamentals of modern manufacturing: materials, processes and systems", JOHN WILEY & SONS, INC., 4th Edition, 2010, ISBN: 978-0470-467002
- **3.** Swadesh Kumar Singh, "A Text Book on Production Engineering", 3rd edition, Made Easy Publication, 2016, ISBN–978-93-5147-217-9
- **4.** G.S Sawhney, "Manufacturing Science I, Forming, Casting and Welding", 2015, I.K. International Publishing House Pvt. Ltd. ISBN: 978-93-82332-53-4.

Continuous Internal Evaluation (CIE)								
(Theory – 10	0 Marks)	(Laboratory- 50 Marks))	Total				
Evaluation method	Course with assignment			(150)				
Quiz -1	10	Performance of the student in						
Test -1	30	the laboratory, every week	40					
Quiz -2	10							
Quiz -3	10	Test at the end of the semester	10					
Test -2	30		10					
Assignments	10	_						
Total	100	Total	50	150				

Semester End Ev	aluatio	n (SEE)		
Theory (100 Marks)	Laboratory(50 M	Total (150)		
Part- –A Objective type questions	20	Experiment Conduction with	40	
Part –B There should be five questions from five units. Each question should be for maximum of 16		proper results Viva	10	-
Marks. The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80			
The UNIT-2 and UNIT-3 should have an internal choice.				

Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.				
Total	100	Total	50	150

	What		To whom	Frequency of conduction	Max Marks	Evidence	Contribution to Course Outcome		
		Quiz		Three	30	Answer			
ds		Test		Two	60/50	Scripts			
	CIE	Assignment/Self-		2 phases	10/20	Reports /	80%		
ho		study		·		Record			
Iet		Laboratory		Weekly	50	Books		100%	
Direct Assessment Methods	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%		90%
		Semester End Laboratory		End of every semester laboratory	50				
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

	CO-PO Mapping											
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO											PO12	
CO1	Η	Η	Μ	L								
CO2	L	Μ	Н	Η	Н							Η
CO3	L	L	Μ	Μ		Н						Н
CO4		L	Μ	Η	Η	Η						Η

Semester: III									
	Course Title: BRIDGE COURSE MATHEMATICS								
Cou	Course Code:16DMA37CIE Marks: 100								
Hrs/Week: L:T:P:S 2:0:0:0 SEE Marks: 100									
Cree	dits:	0	SEE Duration: 3Hrs						
Cou	rse Learning Objectives: The stude	ents will be abl	e to						
1	Acquire knowledge of multivariate	functions, types	s of derivatives involved with these						
I	functions, Jacobian as transformation	n factor and ap	plications.						
	Enhance the knowledge level to visualize integrals in higher dimensional geometry,								
2	possible representation and evaluati	cal and physical quantities in terms							
	of multiple integrals.								
3	Recognize and model differential equations, apply analytic techniques to compute								
3	solution for engineering problems.								
4	Acquire concepts of vector function	, vector field, d	lifferential calculus of vector						
-	functions in Cartesian coordinates.								
5	Finding the approximate solutions u	sing numerical	methods, for problems which do						
3	not have analytical solutions.								
Prei	requisites :								
Нур	erbolic functions, Trigonometric forn	nulas, methods	of differentiation, methods of						

integration, reduction formulae, vector algebra.

UNIT-I	
DIFFERENTIAL CALCULUS	06 Hrs
Taylor and Maclaurin's series for function of single variable.	
Introduction-partial derivatives, simple problems. Total derivative, Composite	
functions, Jacobians- simple problems.	
UNIT-II	
MULTIPLE INTEGRALS	06 Hrs
Evaluation of double and triple integrals – direct problems, change of order in	
double integral, change of variables to polar, cylindrical and spherical coordinate	
systems.	
UNIT-III	
DIFFERENTIAL EQUATIONS	06 Hrs
Higher order linear differential equations with constant coefficients,	
Complementary function and Particular integral, problems. Equations with	
variable coefficients – Cauchy and Legendre differential equations, problems.	
UNIT-IV	1
VECTOR DIFFERENTIATION	06 Hrs
Introduction, simple problems in terms of velocity and acceleration. Concepts of	
Gradient, Divergence- solenoidal vector function, Curl- irrotational vector	
function and Laplacian, simple problems.	
UNIT-V	T
NUMERICAL METHODS	06 Hrs
Algebraic and transcendental equations – Regula-Falsi method, Newton-Raphson	
method.	
Ordinary Differential Equations - Taylor's, modified Euler's and 4th order	
Runge-Kutta methods.	
Numerical Integration – Simpson's 1/3 rd , 3/8 th and Weddle's rules.	

Cou	urse	Ot	itco	me	es:	After	con	pleting	5	the	co	urse,	th	ne students will be able to	
4		1		-		•			• _	<u> </u>	-		1		

- 1 Understand the significance of fundamental concepts of Mathematics in various Engineering problems.
- 2 Interpret the concept of differentiation, integration and differential equations in Engineering and real life problems.
- 3 Apply effectively appropriate quantitative tools and logical modes of thinking to analyze for solving Engineering problems.
- 4 Justify the application of various Mathematical models and broaden the problem solving skills in a wide range of intellectual domains.

- B.S. Grewal; Higher Engineering Mathematics; Khanna Publishers; 40thEdition; 2007; ISBN: 81-7409-195-5
- **2.** N.P Bali & Manish Goyal; A Text Book of Engineering Mathematics; Lakshmi Publications; 7thEdition; 2010; ISBN: 978-81-7008-992-6
- **3.** R.K. Jain & S.R.K. Iyengar; Advanced Engineering Mathematics; Narosa Publishing House; 2002; ISBN: 817319-420-3
- **4.** Erwin Kreyszig; Advanced Engineering Mathematics; John Wiley & Sons; 9th Edition; 2007; ISBN: 978-81-265-3135-6

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)							
Evaluation method	Course with Assignment						
Quiz -1	10						
Test -1	30						
Quiz -2	10						
Quiz -3	10						
Test -2	30						
Assignments	10						
Total	100						

Semester End Evaluation	
Theory (100)	
Part- –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.	
Total	100

		What	To whom	Frequency of conduction	Max Marks	Evidence	Contribution to Course Outcome			
ıt	CIE	Quiz	-	Three	30	Answer	80%			
lei	CIL	Test		Two	60/50	Scripts	0070			
Direct Assessment Methods	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%	100%	90%	
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%		