Rashtreeya Sikshana Samithi Trust

R V College of Engineering (Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi)

Master of Technology (M. Tech.) **Bioinformatics**

Scheme and Syllabus

2016

R.V. College of Engineering, Bengaluru – 59

(Autonomous Institution Affiliated to Visvesvaraya Technological University,, Belagavi)

Department of Biotechnology

Vision:

A premier department in Biotechnology Education, Research and Innovation with a focus on sustainable technologies for the benefit of society and environment.

Mission:

- Create state-of-the-art infrastructure for research and training in Biotechnology.
- Develop graduates who are ethical and socially concerned.
- Promoting collaboration with academia, industries and research organizations at National and International level.
- Contribute to socioeconomic development through sustainable and inclusive technologies

Program Educational Objectives (PEO)

M. Tech. in Bioinformatics Program, graduates will be :

Program Educational Objectives (PEO)

M. Tech. in Bioinformatics Program, graduates will be able to :

- **PEO 1.** Demonstrate knowledge and understanding of engineering principles to analyze problems of life science and design solutions using computational techniques.
- **PEO 2.** Apply modern software tools to Explore to simulate problems of healthcare, pharmaceutical and Agriculture industry and provide virtual Bioinformatics. Solutions
- **PEO 3.** Exhibit good communication skills, team work, ethics, society and environment and sustainability and appreciation of the necessity for lifelong learning.

Program Outcomes (PO)

- M. Tech. in Bioinformatics Graduates will be o:
- **PO 1.** Scholarship of Knowledge: Derive scholarship of knowledge in the area of Bioinformatics through mathematics, science and engineering.
- **PO 2. Critical Thinking:** Design and conduct experiments, analyze and interpret biological data by critical thinking..

- **PO 3. Problem Solving:** Problem solving through a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability
- **PO 4. Research Skill:** Identify, formulate and solve engineering problems through research skills.
- **PO 5.** Usage of modern tools: Create, select and apply appropriate techniques, resources, and modern prediction and modeling engineering tools to solve complex engineering activities.
- **PO 6. Collaborative and Multidisciplinary work:** Perform tasks at the interface of biotechnology, information technology & other allied fields of technology through Interdisciplinary approach
- **PO 7. Project Management and Finance:** Execute projects taking managerial skills into account to optimize the financial benefits.
- **PO 8.** Communication: Develop managerial, leadership & interpersonal skills honing effective communication techniques.
- **PO 9.** Life-long Learning: Enable to carry the interest & motivation, to learn continuously to be able to contribute for the development of flexible & adoptive technology
- **PO 10.** Ethical Practices and Social Responsibility: Understand the need & importance of ethical practices & social responsibility.
- **PO 11. Independent and Reflective Learning:** Practice independent learning & recognize the value of reflective practice in self improvement.

Program Specific Outcomes (PSO)

M. Tech. in Bioinformatics Graduates will be able to:

- **PSO 1.** Apply genomic, proteomics and other omics skills to analyze complex biological problems in research or industry either independently or as a part of team.
- **PSO 2.** Apply modeling, simulation and analytical skills to a evaluate and predict the outcome
- **PSO 3.** Apply High performance computing, Object oriented programs, data mining and artificial intelligence to solve the unknown of life science systems

R. V. College of Engineering, Bengaluru – 59.

(An Autonomous Institution Affiliated to Visvesvaraya Technological University,, Belagavi) **Department of Biotechnology**

M. Tech. Master of Bioinformatics

FIRST SEMESTER												
			BoS		CREDIT	_						
Sl. Course No Code		Course Title		Lecture	Tutorial T	Practical P	Experiential Learning/ Self Study S	Total Credits				
1	16MEM11P	Project Management	IEM	3	1	0	0	4				
2	16MBI12	Applied Statistics	BT	4	0	0	0	4				
3	16MBI13	Principles of Bioinformatics (Theory and Practice)	BT	4	0	1	0	5				
4	16MBI14	Biomolecular Modeling and Simulation	BT	4	0	0	1	5				
5	16MBI15X	Elective -1	BT	4	0	0	0	4				
6	16HSS16	Professional Practice	BT	0	0	2	0	2				
		Total		19	1	3	1	24				
		Number of contact hours		19	2	6	4	31				

Elective -1								
16MBI151	Cell and Molecular Biology	16MBI152	Data Structures in C and C++					

		SE	COND	SEMESTE	R			
			BoS		CREDIT	ALLOCATI	ON	
SI.	Course			Lecture	Tutorial	Practical	Experiential	Total
No	Code	Course Title					Learning /	Credits
							Self Study	
				L	Т	Р	S	
1	16MEM21R	Research Methodology	IEM	3	1	0	0	4
2	16MBI22	Genomics, Proteomics, and						
		Genetic Circuits (Theory and	BT	4	0	1	0	5
		Practice)						
3	16MBI23X	Elective - 2	BT	4	0	0	0	4
4	16MBI24X	Elective - 3	BT	4	0	0	0	4
5	16MBI25X	Elective - 4	BT	4	0	0	0	4
6	16MBI26	Minor Project	BT	0	0	5	0	5
		Total		19	1	6	0	26
		Number of contact hours		19	2	12	0	33

	Elective -2										
16MBI231	Data Warehousing and Mining	16MBI232	Artificial Intelligence								
Elective – 3											
16MBI241	Insilico Drug Design	16MBI242	Pharmacogenomics								
Elective – 4											
16MBI251	Essential Programming for Bioinformatics	16MBI252	High Performance Bio-Computing								

R. V. College of Engineering, Bengaluru – 59. (An Autonomous Institution affiliated to VTU, Belagavi)

Department of Biotechnology

		Т	HIRD S	EMESTEI	ર			
SI.	Course	Course Title	BoS		CREDIT	ALLOCATI	ON	Total
No	Code			Lecture Tutorial Practical Experient				Credits
				L				
							S	
1	16MBI31	Perl and Python	BT	4	0	1	0	5
2	16MBI32X	Elective -5	BT	4	0	0	0	4
3	16MBI33X	Elective -6	BT	4	0	0	0	4
4	16MBI34X	Elective-7	BT	4	0	0	0	4
5	16MBI35	Internship/ Industrial Training	BT	0	0	3	0	3
6	16MBI36	Technical Seminar	BT	0	0	2	0	2
		Total		16	0	6	0	22
		Number of Contact Hours		16	0	12	0	28

M. Tech. Master of Bioinformatics

	Elective -5											
16MBI321	Statistical Tools and Techniques	High Throughput Data Analytics										
Elective – 6												
16MBI331	DNA chips and Microarray Data Analysis	16MBI332	Software Engineering for Computational Biology									
	Elective-7											
16MBI341 Next Generation Sequencing Informatics 16MBI342 Graph Theory and Algorithms												

FOURTH SEMESTER

Scheme and Syllabi – 2016 Admission Batch

			BoS		Total			
Sl. No	Course Code	Course Title		Lecture	Tutorial	Practical	Experiential Learning/ Self Study	Credits
				L	Т	Р	S	
1	16MBI41	Major Project I	3T	0	0	26	0	26
2	16MBI42	Seminar	BT	0	0	2	0	2
		Total		0	0	28	0	28

Applied Statistics											
Course Code	:	16MBI12		CIE Marks	:	100					
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100					
Credits	:	04		SEE Duration	:	03					
Course Learning	g O	bjectives (C	LO):	1							
Graduates shall b	e a	ble to									
1. Understand an	d a	nalyze differe	nt types of data and its stru	icture.							
2. Practice the vi	tal s	statistical met	hods to prove the hypothes	sis and find out the	rela	tionship					
between t	he	data sets.	• 1 1• 1. 1 1	1		1.					
ostimatize to probability principles, applied to advanced bioinformatics data, sampling											
estimation	1S 8	ind predictive	analytics.	time exemples							
4. Analyze the se	que V ce	ence and struc	lure data by taking the real	t time examples.							
5. Construct DIV	1 50		II. II.nit _ I			09 Hrs					
Offic – 1 09 Hrs											
limit theory M	me	ures of Disp	parametric estimations, w	Poarson and Spoa	rma	uency, central					
coefficient Regr	asi	on analysis I	Jypothesis testing: t test 7	test Etest	11110						
Coefficient, Regression analysis. Hypothesis testing: t test, Z test, F test,											
Dint – II 07 IIIS											
Multiplication an	d T	otal probabil	ity rules Joint probability	distribution. Discre	te a	nd continuous					
variables. Rando	m F	Effect Model.	Randomized Complete Blo	ock Design.	ic u	na continuous					
			Unit – III			10 Hrs					
Estimation and	Hv	pothesis testi	ng theory: Estimation the	orv - Introduction.	Crit	eria for "Good					
estimators". Met	hoc	ls of estimati	on - Maximum Likelihood	l estimation, Least	squ	ares, Multiple					
regression, Mult	iva	riate and Bo	otstrapping. Hypothesis t	esting theory – In	troc	luction, Fixed					
sample size test	t, (Composite fi	xed sample size tests, -	2 log λ approxim	natio	ons. ANOVA,					
Multivariate, Boo	otst	rapping Meth	ods. Sequence analysis.								
			Unit – IV			11 Hrs					
Statistical appr	oac	ch for seque	ence alignment and seq	uence search: Co	mpa	arison of two					
aligned, unaligned	ed	sequences an	d Query sequence agains	t a database. Mini	nun	n significance					
lengths. Gapped	BL	AST and PS	I-BLAST. Hidden Morkov	Models: Introduct	ion.	Algorithms –					
Forward and Ba	CKV	vard, Verterb	and Estimation algorithr	ns. Applications of		dden Morkov					
Models.			TI			11 TT					
Amphusic of DN	Δ	and Duatein		unding DNA Ma	4-1:	II Hrs					
Analysis of DN Signals in DNA	A loi	and Protein	sequences: Shotgun seq	Overland counted	aen	ng, wouening					
Applysis of Sing	יטו מוז	Multiple DN	Δ Sequences – Frequence	v comparison Sec		r not-counted.					
Simple tests for	sio	ificant simil	arity in an alignment Alig	nment algorithms f	nr f						
Protein sequence	s ai	nd Substitutio	n matrices. Multiple seque	nce alignment.	01 1	wo sequences.					
Expected Course Outcomes:											
After going through this course the student will be able to:											
CO1. Demonstra	te t	he knowledge	of specialized statistical n	nethods.							
CO2. Apply the s	stati	istical and co	mputational methods for ge	enome and protein o	lata	•					
CO3: Able to est	ima	te the relevar	it tests of hypothesis and th	e probabilities.							

CO4: Interpret the data sets using concurrent statistical methods.

Reference Books:

- **1.** Warren J. Ewens Gregory Grant. Statistical Methods in Bioinformatics: An Introduction (Statistics for Biology and Health), Springer, 2005.
- **2.** Douglas C. Montgomery and George C. Runger. Applied Statistics adn Probability for Engineers. John Wiley Publishers, 3rd Edition, 2002. ISBN: 9812-53-058-4.
- **3.** T. Hastie, R. Tibshirani, J. H. Friedman. The Elements of Statistical Learning, Springer, 2001.
- 4. Bioinformatics and Computational Biology Solutions using R and Bioconductor, edited by R. Gentleman, Springer, 2005.
- 5. Statistical Analysis of Gene Expression Microarray Data, edited by T.P. Chapman & Hall / CRC, Speed. 2003.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	M	L	L	Н	M	-	-	M	M	M
CO2	M	Н	Н	L	Н	L	-	-	L	М	M
CO3	L	L	Н	M	Н	L	-	-	L	L	L
CO4	Н	L	L	L	M	Н	-	-	L	Н	L

	PSO1	PSO2	PSO3
C01	L	Н	L
CO2	H	M	Н
CO3	M	M	L
CO4	L	Н	L

		Principle	s of Bioinformatics (Theory	and Practice)							
Course Code	:	16MBI13		CIE Marks	:	100 -	+5 0				
Hrs/Week	:	L:T:P:S	4:0:1:0	SEE Marks	:	100 -	⊦ 50				
Credits	:	5		SEE Duration	:	3+3]	hrs				
Course Learni	ng (Objectives (CLO):								
Graduates shall	be	able to									
1. Understandir	ıg tl	ne basics of t	pioinformatics and importance	e of different biol	ogio	cal data	abases.				
2. Explore diffe	rent	t software's a	and tools in the field of bioinf	ormatics.							
3. Design algor	3. Design algorithms and predictive methods.										
4. Create custor	nize	ed database a	nd tools for research projects	i							
5. Analyse the											
	Unit – I 10 Hrs										
Introduction to	Introduction to Bioinformatics:										
Bioinformatics	&	Biological	Databases: Bioinformatics	, Goals, Scope,	L	imitati	ions and				
Applications of	bio	informatics.	Types of Databases-Primary	and Secondary D	atal	oases,	Sequence				
and Structure D	atal	oases, Specia	llized Databases.								
Special Databas	ses:	Genome, Mi	icroarray, Metabolic pathway	, motif, Organism	spe	ecific I	Databases				
and domain da	taba	ses. Applica	tions of these databases. Da	tabase Similarity	Sea	arching	g: Unique				
Requirements of	Dt L	Database Sea	rching. Heuristic Database s	searching, Scoring	gΝ	latrice	s - PAM				
and BLUSUM,	Ba	sic Local Al	Ignment Search 1001 (BLAS	ol), FASIA, Com	pai	CISOΠ Ο	I FASIA				
allu BLAST, Da	alaD	ase Searchin	ig algorithings. Global and loc	ai anginnent, Dot	pic	JIS IOF	sequence				
	llai	inc program	Unit – II				10 Hrs				
	vcie	•					101115				
Sequence Aligr	imei	nt: Evolution	nary basis. Sequence similari	ty identity and h	om	nlngv	Concent				
of Homolog. P	aral	og and Orth	nolog Sequences. Types of	Sequence alignme	nt	- Pair	wise and				
Multiple sequer	nce	alignment. A	lignment algorithms, Scoring	g matrices, Statist	ical	l signif	ficance of				
sequence align	men	t. Multiple	Sequence Alignment: Scori	ng function, Exha	iust	tive al	gorithms,				
Heuristic algor	ithn	ns, Practical	issues. Profiles and Hidden	Markov Models	: P	osition	i-Specific				
scoring matrice	s, P	rofiles, Mark	ov Model and Hidden Marko	ov Model.			-				
			Unit – III				10 Hrs				
Prediction Me	thoo	ls using Nuc	cleic Acid Sequence:				L				
Sequence logo	s.	Gene and	Promoter Prediction: Prom	oter and Regula	ator	y ele	ments in				
Prokaryotes an	d E	ukaryotes. P	romoter and Regulatory ele	ment prediction -	- al	gorith	ms. Gene				
prediction. Get	ne p	prediction in	n Prokaryotes and Eukaryot	es. Categories o	f C	Gene I	Prediction				
Programs. Pree	licti	on algorithi	ms. Discussions with case	studies. Predictiv	ve	metho	ods using				
Nucleic acid s	sequ	ence – DN	A framework, Masking of	repetitive DNA	, p	redicti	ng RNA				
secondary struc	ture	e, Finding RI	NA genes, Detection of func	tional sites and Co	odo	n bias	in DNA.				
Primer design and restriction maps.											
	-		Unit – IV				10 Hrs				
Prediction Me	thoo	is using Pro	tein Sequence:			·					
Motifs and Do	mai	ins Predictio	on: Motif and Domain data	bases, Identificati	on	ot M	otits and				
Domains in M	Iulti	ple Sequen	ce Alignment using Regula	r expressions, M	10t	it and	Domain				
Databases statis	stica	l models, Pr	otein Family databases, Moti	t Discovery in una	ılig	ned se	quences.				

Predictive methods using protein sequence – Protein identity and Physical properties. Structure prediction - Prediction of secondary structure of protein, Antigenic sites, Active sites, Folding classes, specialized structures and Tertiary structures. Discussions with case studies. Unit – V 10 Hrs **Phylogenetic Analysis:** Molecular Phylogenetic: Phylogenetic Basics. Molecular Evolution and Molecular Phylogenetic - Terminology, Gene Phylogeny vs Species Phylogeny. Forms of Tree Representation. Phylogenetic Tree Construction Methods and Programs - Distance-Based Methods, Character-Based Methods. Phylogenetic Tree evaluation methods. Phylogenetic analysis software and algorithms. Bootstrap methods. Unit – VI (Lab Component) **COURSE OBJECTIVES** 1. Gene sequence assembly and contig mapping and identification of Gene. 2. Primer and Promoter design for a given sequences 3. Sequence searches using FASTA and BLAST, and Phylogenetic analysis. 4. Prediction of secondary structure for given protein and RNA sequences. 5. Retrieval of protein structure from PDB and its visualization and modification. 6. Prediction of 3D structure of unknown protein sequence. 7. Prediction of protein-protein interactions. 8. EST clustering and EST mapping, and Genome annotation 9. Microarray data analysis- normalization, clustering. 10. Study of Profiles, Patterns and PSSMs. **Expected Course Outcomes:** After going through this course the student will be able to: CO1: Understand the basic concepts of bioinformatics. CO2: Describe Genomics and proteomics analysis using various databases. CO3: Analyze various Application of software and tools with the understanding of underlying algorithms. CO4. Design models for biological problems using predictive methods. **Reference Books:** 1. Essential Bioinformatics by Jin Xiong, Cambridge University Press, 2006. 2. Essentials of Drug Designing by V. Kothekar, DHRUV Publications, 2005. 3. Systems Biology: Applications and Perspectives by Bringmann, Springer, 2007. 4. Bioinformatics and Molecular Evolution by Paul G. Higgs, Teresa K. Attwood, Blackwell, 2005. 5. Bioinformatics Basics: Applications in Biological Science and Medicine by Lukas, 2005. Scheme of Continuous Internal Evaluation (CIE) for Theory CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks. Scheme of Continuous Internal Evaluation (CIE) for Practical CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks. Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
CO1	H	L	-	-	-	M	-	-	H	H	Н	
CO2	Н	Н	Н	L	Н	H	-	-	H	L	М	
CO3	М	Н	Н	Н	Н	H	L	L	H	L	М	
CO4	М	Н	Н	M	Н	M	L	L	H	М	Н	
Mapping of COs with PSOs												
				PSO1		P	PSO2		PSO3			
		CO1		M		M			L			
		CO2		H			Н		L			
		CO3		M			М		Η			
		CO4		L			Н		М			

	Biomolecular Modeling and Simulation									
Course Code	:	16MBI14		CIE Marks	:	100				
Hrs/Week	:	L:T:P:S	4:0:0:1	SEE Marks	:	100				
Credits	:	5		SEE Duration	:	3 hrs				
Course Learni	ng	Objectives (C	CLO):							
Graduates shall	be	able to								
1. Explore the knowledge of the fundamental areas of molecular modeling and simulation and										
study the role of computer science in life sciences.										
2. Acquire knowledge of the Protein structural hierarchy and their diversity.										
3. Study Molect	3. Study Molecular and Quantum mechanics and explore their applications in the mimic of									
physical	ph	enomenon.				ſ				
4. Understand t	he i	mportance of	molecular and quantum mec	hanics in the area	of	modeling and				
simulati	on	of biological p	bhenomenon by projecting m	icroscopic enviro	nme	ent at				
macrosc	opi	c level.				ſ				
5. Understand t	he r	ole modeling	and simulation in the study o	of energetics of bio	olo	gical systems				
along w	ith 1	their dynamic	S							
			Unit – I			09Hrs				
Biomolecular	Biomolecular Structure and Modeling: Historical Perspective, Introduction to Molecular									
Modeling, Roots of Molecular modeling in Molecular mechanics. Structure Hierarchy: Helices –										
Classic α -Helix and π Helices, Left-Handed α -Helix and Collagen Helix. β -Sheets - Turns and										
Loops. Super s	eco	ndary and Te	rtiary structure. Complex 3I	O Networks. Intro	du	ction to X-Ray				
crystallography	and	d NMR spectr	oscopy. Introduction to PDB	and 3D Structure	da	ita, Structure of				

PDB and other 3D Structure record. Classes in Protein Architecture – Folds, α -Class, Bundles, Folded leaves, Hairpin arrays. β -Class folds, Anti-parallel β domains, parallel and Anti-parallel Combinations. α/β and $\alpha+\beta$ -Class, α/β Barrels, Open twisted α/β folds, Leucine-rich α/β folds. $\alpha+\beta$ folds. Quaternary structure.

Unit – II10HrsForce Fields: Formulation of the Model and Energy, Quantifying Characteristic Motions,
Complex Biomolecular Spectra, Spectra as force constant sources, In-Plane and Out-of-Plane
Bending. Bond Length Potentials, Bond Angle Potentials, Cross bond stretch / Angle bend terms.
Torsional potentials, Improper torsion, Cross dihedral/Bond angle, Dihedral terms. Van der Waals
potentials. Rapidly decaying potential. Coulomb potential, Slowly decaying potential, Dielectric
function and Partial charges. 3D QSAR Methods. Free energy calculations in Biological Systems
- Drug design, Signal transduction, Peptide folding, Membrane protein association, Numerical
methods for calculating the potential of mean force, Replica-Exchange-Based Free-Energy
Methods.

Unit – III9 HrsMolecular modeling: Modeling basics. Generation of 3D Coordinates Crystal data, Fragment
libraries, and conversion of 2D Structural data into 3D form. Force fields and Geometry
optimization. Energy minimizing procedures - Use of Charges, Solvent effects and Quantum
Mechanical methods. Computational tools for Molecular modeling. Methods of Conformational
analysis - Systematic search procedures, Monte Carlo and molecular dynamics methods.9 Hrs

Unit – IV

Dynamical and Stochastic-Dynamical Foundations for Macromolecular Modeling: Bimolecular sampling: Algorithms, Test molecules, and metrics. Approach to thermal equilibrium in Biomolecular simulation, Hybrid Monte Carlo and Newton Raphson methods. Langevin equation for generalized coordinates, Meta stability and Dominant Eigen values of Transfer operators. Implicit solvent electrostatics in Biomolecular Simulation, New distributed multipole methods.

Unit – V10 HrsQuantum-Chemical Models for Macromolecular Simulation: Fast and Reliable Quantum
Chemical Modeling of Macromolecules, Quantum chemistry simulations of Gly-opeptide
antibiotics. Membrane Protein Simulations: Membrane proteins and their importance,
Membrane protein environments in Vivo and in Vitro. Modeling a complex environment -
Simulation methods for membranes, Membrane protein systems, Complex solvents, Detergent
micelles, Lipid bilayers, Self-Assembly and Complex systems. Modeling and Simulation of
Allosteric regulation in enzymes – Modeling and Simulation of sGC.10 Hrs

Expected Course Outcomes:

After going through this course the student will be able to:

- CO1: Define and explain concepts of Object Oriented Programming along with the possible data structures
- CO2: Apply Object Oriented programming and data structures to solve the problems in the area of Big Data Analytics
- CO3: Analyze and evaluate both set of sorting and searching algorithms with case studies
- CO4: Design and implement algorithms to perform high throughput data analysis in the field Sequence and structure analysis

Reference Books:

10 Hrs

1.	Tan	nar Sch	lick. Mo	lecular	Modelin	g and Si	imulatio	n: An In	terdiscip	linary (Guide, P	ublished
	by S	Springer	r, 2nd ed	ition, 2	2010.	-			-	2		
2.	Isid	oreRigo	outsos, (G. Step	ohanopoul	los. Syst	tems Bi	ology, P	ublished	l by O	xford U	niversity
	Pres	ss US, 2	2006.	-	-	5				5		-
3.	Tim	othy J.	Barth, N	Michae	l Griebel,	David E	E.Keyes,	Risto M	I. Niemi	nen, Di	rk Roos	e, Tamar
	Sch	lick. Ne	w Algoi	rithms	for Macro	omolecu	lar Sim	ulation,	Publishe	ed by Sp	oringer, 2	2006.
4.	Pete	er T. C	umming	s, Phil	lip R. W	estmorla	nd, Bric	e Carna	han. Fo	undatio	ns of M	Iolecular
	Modeling and Simulation, Published by American Institute of Chemical Engineer											
<mark>Sch</mark>	Scheme of Continuous Internal Evaluation (CIE) for Theory											
CIE	wil	l consi	st of TV	VO Te	sts, TWO	Quizzes	s and O	NE assig	gnment.	The tes	st wir 🕺	study
mar	ks e	ach and	the quiz	z for 10) marks ea	ach. The	assignm	ent will	be for 20) marks	. The J	al marks
for	CIE	(Theory	y) will b	<mark>e 100 r</mark>	narks.						r	
Sch	eme	of Sen	iester E	nd Exa	aminatior	1 (SEE)	for The	ory				
The	que	estion pa	aper will	have	FIVE que	stions w	ith inter	nal choic	te from	each un	it. Each	question
Will	cari	ry 20 m	arks. Stu	ident w	ill have to	o answer	one que	estion fro	om each	unit. Th	ie total n	narks for
SEE	<u>- (11</u>	neory) v	vill be 1	$\frac{00 \text{ mar}}{100 \text{ mar}}$	KS.							
Maj	ppin	g of CC	s with P		DO 4		DOG	DOF	DOG	DOA	DO40	DO11
		<u>PO1</u>	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11
	<u>J1</u>	<u>H</u>	M	H	<u>M</u>			-	-		-	
CO	J2	M	H	H	<u>H</u>	M	M	-	-		-	
CO	<u>J</u> 3	M	H	H	H	M	H	-	-		-	
C	<u>)</u>	M	<u>H</u>	M	H	M	H	-	-	L	-	L
Maj	ppin	g o <u>f CC</u>	s with P	SOs			1					
					PS0	<u>D1</u>	P	SO2		PSO3		
			_ <u>CO1</u>		L	ı		_L		H		
			CO2		M	1		<u> </u>		H		
			CO3		L			М		M		
			CO 4		H	[L		Н		

			Cell and Molecular Biolog	gy				
Course Code	:	16MBI151		CIE Marks	:	100		
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100		
Credits	:	4		SEE Duration	:	3 hr	5	
Course Learni	ng	Objectives (C	CLO):					
Graduates shall	be	able to						
1. Obtain a solid	l fo	undation in ce	ellular and molecular concept	ts and understand	the	struc	tures and	
function	s of	f different bio	molecules, their interaction a	ind associated bioe	ne	rgetic	5.	
2. Get an overvi	lew	of different n	embrane transport process a	nd signal transduc	tio	n 	,	
3. Understand th	ie	concept of cei	itral dogma and with special	emphasis on prok	ary	otic a	nd	
eukaryo	tic I	DNA replicati	on, DNA Damage and repair			· 1	1	
4. Get an insigh	t of	the concepts	of transcription, translation a	and the post transc	rıp	tional	and	
	ona	I process		and automates				
5. Understand u	ie r	egulation of g		es and eukaryotes.			10 Um	
T . T . • .								
Introduction to	Introduction to Cell and Molecular Biology: Basic properties of cells, Structure and function							
of prokaryotic	and	eukaryotic c	ells. Cell cycle, Chromoson	ne structure and f	un	ctions	, Cellular	
fates- malignan	it g	growth, cell c	lifferentiation, programmed	cell death, aging	3.6	ind se	enescence	
Blomolecules-	Ca	rbonydrates,	Lipids, Proteins, nucleic a	cias. Bioenergetic	:S-	1 ne	Laws of	
Thermodynamic	cs a	ind the Conce	ot of Entropy Free Energy.				0.11	
Mambuana Tu				aina. Tuanan aut. nu			9 Hrs	
shannola Coll	ans	port phenom	tena: Types, Transport protection	eins, Transport pr	OC ali	ess, Iv		
coupled recepto	sigi	alling allu Sig	d massangars protain tyrasi	ine phosphorylatic	Idi.	ing, C	ochonicm	
for signal transc	TS c	tion calcium	in messengers, protenn-tyros	nie phosphorylaud	II č	is a m	echanisin	
	luci		Unit – III	•			9 Hrs	
Concept of Ce	ntr	al Dogma: D	NA replication - Semiconse	ervative Replication	on.	Repl	ication in	
Prokarvotes and	l eu	ikarvotes, telo	mere replication. DNA repa	ir- Nucleotide exc	isi	on rei	oair. Base	
excision repair,	Μ	lismatch repa	ir, Double-strand breakage	repair. Mutations	. (Oncog	enes and	
tumor suppresso	or g	enes.	5	1	,	0		
			Unit – IV				10 Hrs	
Gene Expressi	on:	Overview of	f transcription in both proka	aryotic and eukar	yot	ic cel	ls. Small	
regulatory RNA	ls a	nd RNA silen	cing pathways. Post transcri	ptional modification	on.	Gene	tic Code.	
Translation med	hai	nism in proka	ryotes and eukaryotes, mRN	A Surveillance an	d d	juality	Control,	
Post translation	mo	difications.						
			Unit – V				10 Hrs	
Control of Ge	ne	Expression:	Operons, Transcriptional-le	vel control- Role	0	f Trar	nscription	
Factors in Regu	lati	ing Gene Exp	ression, Enhancers and supre	essors. Ribo switch	ies	. Tran	slational-	
level control- C	Con	trol of mRNA	A Translation, mRNA Stabil	lity and the role of	of	Micro	RNAs in	
Translational-Le	eve	l Control. Epi	genetics and gene regulation.	•				
Expected Cour	se	Outcomes:						
After going thro	oug	h this course s	tudents will be able to:					
CO1: Rememb	er	and explain	the cell and molecular bio	ology concepts su	ch	as s	tructures,	

functions and interactions of biologically important molecules

- CO2: Explain the relationship between genes, proteins and their functions
- CO3: Compare and contrast between various cells, physiological processes and inheritance pattern

CO4: Apply the molecular biology concepts to understand complex biological process

Reference Books:

- 1. David P. Clark, Nanette J. Pazdernik., "Molecular Biology", Academic Press, 2nd edition, 2013. ISBN: 9780123785947.
- 2. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira. Molecular Biology, Freeman, 7th edn, 2013. ISBN: 13:9781464109812.
- 3. Gerald Karp, Cell and Molecular Biology, Wiley, 7th edn , 2013, ISBN-13: 978-1118301791
- 4. Donald Voet, Charlotte W. Pratt, Judith G. Voet.," Principles of Biochemistry: International Student Version". Wiley John and Sons, 2012. ISBN: 1118092449.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs

	<u> </u>	1	1	i	1	1	1	1	î .	1	1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	L	L	L	L	L	-	-	L	-	L
CO2	M	H	H	M	L	L	-	-	M	-	L
CO3	L	M	M	L	L	L	-	-	H	L	L
CO4	L	H	H	L	L	L	-	-	M	-	L

	PSO1	PSO2	PSO3
C01	M	M	L
CO2	Н	M	L
CO3	М	H	L
CO4	L	M	M

			Data Structures in C and C]++		
Course Code	:	16MBI152		CIE Marks	:	100
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100
Credits	:	4		SEE Duration	:	3 hrs
Course Learni	ng	Objectives (C	LO):			
Graduates shall	be	able to			_	
1. Explore the k	nov	wledge of the	fundamental areas of compu	ter science such as	S P	rogramming
languag	es a	ind study the r	ole of computer science in li	te sciences.		
3 Study data st	riici	tures Stack O	ueue Tinked Stack and queu	les Trees and Tabl	ec	
4 Understand t	he i	mportance of	various data structures to sol	ve the problems re	ela	ted to High
through	nut	Data analysis	various data structures to sol	we the problems it	ciu	icu to mgn
5. Explore prac	tica	lly the applica	tions of various data structu	res along with obje	ect	oriented
program	ımiı	ng.		0 5		
			Unit – I			08Hrs
Basic concept	s: `	Variables, Op	erators, Statements, Functi	ons and Pointers	5.	Introduction to
Classes, Object	s a	nd Object ori	ented design, C++ string cl	lasses. Features o	f (Object Oriented
Programming –	En	capsulation, I	nheritance and Polymorphism	n.		
			Unit – II			10Hrs
Stacks: Stack	spe	cifications, L	ists and Arrays. Reversing	a list, Implemen	ıta	tion of Stacks,
Specification of	t me	ethods for Sta	cks. Class Specification, Pus	shing, Popping, ar	nd	Other Methods.
Queues: Defin	1t10 1	ns, Queue U	perations, Extended Queu	e Operations, In	ipl	ementations of
structures Poin	Idi	inplementation and Dynami	on of Queues. Linked Stack	s and Queues: Po	01111 6 –	Linked stacks
Linked stacks v	vith	safeguards T	estructor Overloading Assis	α minimum α sinucture	s - Co	Diffeed Stacks,
Modified linked	l-sta	ack specificati	on. Linked queues - Basic de	eclarations. Extend	dec	l linked queues.
			Unit – III	,,		10Hrs
Recursion: Int	rod	uction to Red	cursion, Stack Frames for	Subprograms, Tre	e	of Subprogram
Calls, Factorial	s: A	A Recursive D	efinition, Divide and Conqu	er (Towers of Ha	noi	i). Principles of
Recursion - De	sigr	ning recursive	algorithms. Tail Recursion,	Refinement. Lists	s a	nd Strings: List
definition, Me	tho	d specificatio	ons, Implementation of li	sts, Class temp	late	es, Contiguous
implementation	, Si	mply linked in	nplementation. Variation: K	eeping the Curren	t P	osition, Doubly
Linked Lists, (Lon	nparison of I	nplementations. Strings - S	Strings in C++, I	mp	plementation of
strings, String c	per	ations. Linked	l lists in Arrays.			1011
Convolting, Int		untion Desig	Unit – IV	auch Dimanu aca	b	IUHIS
Algorithm Dov	noa	uction Basic s	search types - Sequential se	earch, Binary sear	CD Dia	, Ordered lists.
Notations Sort	ing	Introduction	Storable Lists Sort types	- Bubble sort Ins	ort	ion sort Marga
sort Selection	sort	Shell sort D	Divide-and-Conquer sorting	Merge sort for lin	ke	d lists Ordered
insertion. Linke	d v	version. Analy	rsis - Algorithm, Contiguous	s implementation	an	d Comparisons.
Analysis of M	erg	e sort. Ouick	sort for Contiguous lists.	Partitioning the	li	st, Analysis of
Quicksort, Con	ipai	rison with Me	erge sort. Heaps and Heapso	ort, Analysis of H	ear	osort. Two-Way
trees as lists.Pri	orit	y Queues.		-	_	
			Unit – V			10 Hrs

Tal Rec Spa Tre Co Tra alg Sec Spa	bles ctang arse ees: mple vers orith quen annin	and gular tables Basic ete bin ing b ing b inn. G tial re ng Tre	Information tables Jag s. Collision terminoloc nary tree, pinary tree raphs: Ter presentation presentation	on Ret ged tal ogy. Bi Extend s, thre minolc ons of g um Co	rieval: Ir oles, Inve ution with inary tree ed binary aded binary aded bina ogy & Re graphs - A st Spannir	ntroducti rted tabl h Open s - Bin tree, A ary trees presenta djacency	on. Tabl les. Tabl Address ary tree rray and s. Trave tions, G y matrice	es of va es: New ing, Col represe Linked rsing Th raphs & es, Trave	rious sh Abstrac lision R ntation, represe rreaded Multi-gr rsal, Co	apes, T ct Data esolutio algebra ntation binary aphs, I nnected	riangu Type on by aic Ex of Bi trees Directe l comp	Liai , E C kpr nar , E ed por	tables, Iashing, haining. essions, y trees. Iuffman Graphs, hent and
Ex	pect	ed Co	ourse Outo	omes:									
Af	ter g	oing t	hrough this	s cours	e students	will be a	able to:		ing alam	ا ما د ا	4h a m a	:	bla data
)1: L	Perine	and explai	n conc	cepts of O	bject Ori	ented Pr	ogramm	ing alon	g with	tne po	SS1	die data
CC)2: A	vlaa	Object Ori	s ented i	orogramm	ing and	data stri	ictures to	o solve t	he prof	olems	in	the area
		-PP-J	of Big D	ata An	alytics	ing und	aata sat	ictures to	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ne proc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ine ureu
CC)3: A	nalyz	e and evalu	iate bo	th set of s	orting ar	nd search	ning algo	rithms v	vith cas	e stud	ies	
CC	04: I	Desigr	and impl	ement	algorithm	s to perf	form hi	gh throu	ghput d	ata ana	lysis i	n t	he field
De	form	nco D	Sequence	e and s	tructure a	nalysis							
Re	Nel			lua da			T a a una i u	~ 0 D ~	4] - 44 D(07			
-1. -2	ine.	п В. Г	Jaie. C++ j	oius da	ia structur	es, Jones	s Learnii	ig & Bar		107			
2.	Vir	iu V. I	Das. Princi	ples Of	Data Stru	ictures U	Jsing C A	And C++	, New A	.ge Inte	rnatio	nal	, 2006.
3.	Ro 200	bert K)1.	Kruse, Alex	ander	Ryba, <u>Dat</u>	ta Struct	ures and	Progran	<u>n Desig</u> ı	<u>1 in C+</u>	<u>+</u> , Pre	nti	ce Hall,
4.	Jea Tat	n-Pau aMc-(l Tremblay Graw Hill I	7, Paul. Interna	G. Sores G. Sores	an. An i tions, 2n	ntroduct d editior	ion to da 1, 1984.	ita struc	tures w	ith <u>A</u> ţ	<u>pli</u>	<u>cations</u> ,
5.	А.	Micha	el Berman	. Data	structures	via C++	, Oxford	l Univers	sity Pres	s, 2002			
Scl	hem	e of C	ontinuous	Inter	nal Evalu	ation (C	IE) for '	Theory					
CII	E wi	ll cor	sist of TV	VO Tes	sts, TWO	Quizzes	and OI	NE assig	nment.	The tes	st will	be	for 30
ma	rks e	each a	nd the quiz	2 for 10) marks ea	ch. The	assignm	ent will t	be for 20	marks	. The t	ota	ıl marks
for	CIE	(The	ory) will b	e 100 r	narks.		()						
SCI	nem	e or S	naper will	na Exa	amination FIVE que	(SEE) 1	t or I nec ith interr	ory val choic	o from o	ach un	it Fac	h.	uestion
wil	l qu l car	rv 20	marks Stu	ident w	rill have to	answer		stion fro	m each i	unit Th	e tota	l m	arks for
SE	E (T	heory) will be 1	00 mar	ks.	, and wer	one que	50000 110	in cuch (. 111	
Ma	ppir	ng of (COs with P	Os									
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11
<u>C</u>	01	H	M	H	M	L	L	-	-	L	-	\downarrow	L
<u>C</u>	02	M	<u>H</u>	H	H	H	M	-	-	L	-	_	L
	$\frac{03}{04}$	M	<u>Н</u>	H M		H		-	-		-	\rightarrow	
	04 Innir	ug of (<u> </u>	SOs	П		п	_	-		_		L
1,10	·ΥΥΠ	-5 UI (503	PSC	D1	P	SO2		PSO3			
			C01		L			M		M			

	CO2	M	L	Н
Γ	CO3	L	M	Н
Γ	CO4	H	M	H

G	eno	mics, Proteo	mics and Genetic Circu	uits (Theory and Prac	tic	e)
Course Code	:	16MBI22		CIE Marks	:	100 +50
Hrs/Week	:	L:T:P:S	4:0:1:0	SEE Marks	:	100 +50
Credits	:	5		SEE Duration	:	3 +3 hrs
Course Learni	ng	Objectives (C	CLO):			
Graduates shall	be	able to				
1. Understand t	he r	nolecular aspe	ects of the genome.			
2. Develop the	con	cepts and prin	ciples underlying the hu	uman genome project a	nd	plant genome
program	l. bot	woon the diffe	propt structures and fund	tions of the protoome		
4 Get insights	Det on r	vrotein identifi	ication and sequencing i	methods		
5 Understand t	he c	lynamic mode	and regulatory netwo	orks at cellular level		
		ij name moue	Unit – I			9 Hrs
Introduction to	n G	enomics: Ger	nome evolution and org	anization in prokarvot	-5 2	and eukarvotes
Genome mapp	ing	Genetic and	l physical mapping. M	folecular markers and	Dr	otein markers.
Genome sequer	ncin	g. basics. stra	tegies and methodology	7. Comparative and Fu	icti	onal genomics:
Model systems	- A	rabidopsis, H	uman, Drophila and \vec{E}	<i>coli</i> . Serial analysis o	fg	ene expression
(SAGE) and ta	rget	ing induced l	local lesions in genome	(TILLING). Genome	Wi	de Association
Studies (GWAS	5)	-		· · ·		
			Unit – II			10 Hrs
Tools for Ger	ion	ics: Comput	ational analysis of sec	quences- finding gene	sς	and regulatory
regions; Gene						and regulatory
	ann	otation; Alig	nment statistics; Predic	ction of gene function	us	sing homology,
context, structu	ann Ires	otation; Alig Expression	nment statistics; Predic sequence tags (ESTs),	tion of gene function Microarrays technolog	us gy-	ing homology, Principles and
context, structu applications, F	ann ires ISH	otation; Align Expression , transcripton	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs (ction of gene function Microarrays technolog determination. Allele	us gy- nin	ing homology, Principles and ing and single
context, structu applications, F nucteotide poly	ann ires ISH mo	otation; Align Expression , transcripton rphisms (SNF	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs (Ps).Transcriptomics; Ca	ction of gene function Microarrays technolog determination. Allele in uncer Genomics, Epige	us gy- nin nor	ing homology, Principles and ing and single nics, Chemical
context, structu applications, F nucteotide poly Genomics; Me	ann ires ISH mo tabo	otation; Aligi . Expression , transcripton rphisms (SNF plomics, Nutr	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs o Ps).Transcriptomics; Ca rigenomics, interactomic stions of Human Conom	ction of gene function Microarrays technolog determination. Allele incer Genomics, Epige cs, Metagenomics. Pe	us gy- nin nor erso	ing homology, Principles and ing and single nics, Chemical nal Genomics;
context, structu applications, F. nucteotide poly Genomics; Me Social, Legal an	ann ISH mo tabo nd H	otation; Align Expression , transcripton rphisms (SNF olomics, Nutr Cthical Implica	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Ca rigenomics, interactomic ations of Human Genom	ction of gene function Microarrays technolog determination. Allele f incer Genomics, Epige cs, Metagenomics. Pe ne Research.	us gy- nin nor erso	ing homology, Principles and ing and single nics, Chemical nal Genomics;
context, structu applications, F nucteotide poly Genomics; Me Social, Legal an	ann ires ISH mo tabo nd E	otation; Align Expression , transcripton rphisms (SNF blomics, Nutr Ethical Implica	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Ca rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sen	ction of gene function Microarrays technolog determination. Allele incer Genomics, Epige cs, Metagenomics. Pe ne Research.	us gy- nin nor erso	sing homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs
context, structu applications, F. nucteotide poly Genomics; Me Social, Legal an Introduction a	ann ires ISH mo tabo nd E and	otation; Align Expression , transcripton rphisms (SNF olomics, Nutr Cthical Implica Scope of Pr finity chroma	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Ca rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sep atographic techniques	ction of gene function Microarrays technolog determination. Allele f incer Genomics, Epige cs, Metagenomics. Pe ne Research.	us gy- nin nor erso	ing homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs exchange, Size
context, structu applications, Fi nucteotide poly Genomics; Me Social, Legal an Introduction a exclusion and isoelectric focu	ann Ires ISH mo tabo nd E and af	otation; Align Expression , transcripton rphisms (SNF blomics, Nutr Cthical Implica Scope of Pr finity chroma g, two dimen	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Ca rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sep atographic techniques, sional poly acrylamide	ction of gene function Microarrays technolog determination. Allele incer Genomics, Epige cs, Metagenomics. Pe ne Research. Daration techniques: Ic Poly acrylamide ge gel electrophoresis. M	us gy- min nor erso on e l e Mas	sing homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs exchange, Size electrophoresis, s spectrometry
context, structu applications, F. nucteotide poly Genomics; Me Social, Legal an Introduction a exclusion and isoelectric focu based technique	ann ures ISH mo tabo nd H and af asing	otation; Align Expression , transcripton rphisms (SNF olomics, Nutr Cthical Implica Scope of Pr finity chroma g, two diment or protein iden	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Car rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sep atographic techniques, sional poly acrylamide ntification.	ction of gene function Microarrays technolog determination. Allele f incer Genomics, Epige cs, Metagenomics. Pe ne Research. paration techniques: Ic Poly acrylamide ge gel electrophoresis, M	us gy- min nor erso on e l e Aas	homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs exchange, Size electrophoresis, s spectrometry
context, structu applications, Fi nucteotide poly Genomics; Me Social, Legal an Introduction a exclusion and isoelectric focu based technique	ann ares ISH mo tabo nd E and af asin; es fo	otation; Align Expression , transcripton rphisms (SNF olomics, Nutr Chical Implica Scope of Pr finity chroma g, two diment or protein iden	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Ca rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sep atographic techniques, sional poly acrylamide ntification. Unit – IV	ction of gene function Microarrays technolog determination. Allele f incer Genomics, Epige cs, Metagenomics. Pe ne Research. Daration techniques: Ic Poly acrylamide ge gel electrophoresis, M	us gy- min nor erso n e l e /as	ing homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs exchange, Size electrophoresis, s spectrometry 10 Hrs
context, structu applications, F. nucteotide poly Genomics; Me Social, Legal an Introduction a exclusion and isoelectric focu based technique	ann ISH ISH mo tabo nd H af asing es fo	otation; Align Expression , transcripton rphisms (SNF olomics, Nutr Cthical Implica Scope of Pr finity chroma g, two diment or protein iden	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Car rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sep atographic techniques, sional poly acrylamide ntification. Unit – IV degradation, mass fing	ction of gene function Microarrays technolog determination. Allele f incer Genomics, Epige cs, Metagenomics. Pe ne Research. paration techniques: Ic Poly acrylamide ge gel electrophoresis, M	us gy- min nor erso on e l e Aas	ing homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs exchange, Size electrophoresis, s spectrometry 10 Hrs nesis and post
context, structu applications, Finucteotide poly Genomics; Me Social, Legal an Introduction a exclusion and isoelectric focu based technique Protein Seque translational mo	ann ures ISH mo tabo nd E and af asing es fo	otation; Align Expression , transcripton rphisms (SNF olomics, Nutr Chical Implica Scope of Pr finity chroma g, two diment or protein iden ng: Edman	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Ca rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sep atographic techniques, sional poly acrylamide ntification. Unit – IV degradation, mass fing atification of phosphory	ction of gene function Microarrays technolog determination. Allele f incer Genomics, Epige cs, Metagenomics. Pe ne Research. Daration techniques: Ic Poly acrylamide ge gel electrophoresis, M gerprinting, protein sy lated proteins, characte	us gy- min nor erso n e l e Aas vnth eriz	ing homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs exchange, Size electrophoresis, s spectrometry 10 Hrs nesis and post cation of multi-
context, structu applications, F: nucteotide poly Genomics; Me Social, Legal an Introduction a exclusion and isoelectric focu based technique Protein Seque translational me protein comple	ann ures ISH mo tabo nd H and af asing es fo	otation; Align Expression , transcripton rphisms (SNF blomics, Nutr Cthical Implicat Scope of Pr finity chroma g, two diment or protein iden ng: Edman Gications. Iden 5, protein -	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Ca rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sep atographic techniques, sional poly acrylamide ntification. Unit – IV degradation, mass fing atification of phosphory protein interactions (ction of gene function Microarrays technolog determination. Allele incer Genomics, Epige cs, Metagenomics. Pe ne Research. Daration techniques: Ic Poly acrylamide ge gel electrophoresis, M gerprinting, protein sy lated proteins, characte (Immunoprecipitation)	us gy- min nor rrso on e l e Aas vnth eriz an	ing homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs exchange, Size electrophoresis, s spectrometry 10 Hrs nesis and post vation of multi- net quantitative
context, structu applications, Finucteotide poly Genomics; Me Social, Legal an Introduction a exclusion and isoelectric focu based technique Protein Seque translational mo proteomics- Ch	ann ures ISH mo tabo nd H af af sin sin es fo enci odif	otation; Align Expression , transcripton rphisms (SNF olomics, Nutr Chical Implica Scope of Pr finity chroma g, two diment or protein iden ications. Iden s, protein - cterization of	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Ca rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sep atographic techniques, sional poly acrylamide ntification. Unit – IV degradation, mass fing atification of phosphory protein interactions (interaction clusters us	ction of gene function Microarrays technolog determination. Allele incer Genomics, Epige cs, Metagenomics. Pe ne Research. Daration techniques: Ic Poly acrylamide ge gel electrophoresis, M gerprinting, protein sy lated proteins, characte (Immunoprecipitation) ing two-hybrid system	us 3y- min nor rso m e l e fas //nth eriz an	ing homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs exchange, Size electrophoresis, s spectrometry 10 Hrs nesis and post ation of multi- ind quantitative Protein arrays-
context, structu applications, F: nucteotide poly Genomics; Me Social, Legal an Introduction a exclusion and isoelectric focu based technique Protein Seque translational me protein comple proteomics- Ch definition, app	anni Ires ISH mo tabo tabo tabo tabo tabo tabo tabo tab	otation; Align Expression , transcripton rphisms (SNF olomics, Nutr Chical Implicat Scope of Pr finity chroma g, two diment or protein iden ications. Iden s, protein - cterization of tions- diagne	nment statistics; Predic sequence tags (ESTs), ne analysis and SNPs of Ps).Transcriptomics; Ca rigenomics, interactomic ations of Human Genom Unit – III roteomics: Protein sep atographic techniques, sional poly acrylamide ntification. Unit – IV degradation, mass fing stification of phosphory protein interactions (interaction clusters us ostics, expression pro	ction of gene function Microarrays technolog determination. Allele incer Genomics, Epige cs, Metagenomics. Pe ne Research. paration techniques: Ic Poly acrylamide ge gel electrophoresis, M gerprinting, protein sy lated proteins, characte (Immunoprecipitation) ing two-hybrid system ofiling, Functional pro-	us gy- min nor erso on e l e l e l e l an z. oteo	sing homology, Principles and ing and single nics, Chemical nal Genomics; 9 Hrs exchange, Size electrophoresis, s spectrometry 10 Hrs nesis and post ation of multi- quantitative Protein arrays- protein, Protein

	Unit – V 10 Hrs
Ba	sic Principles of Systems Biology: Scope, Concepts and Applications, Current Progress in
Sta	atic and Dvanamic Modelling of Biological networkds. Models and Modeling in Systems
Bi	plogy Advantages of Computational Modeling Modeling of Gene Expression- Lactose Lac
On	peron tRNA Analysis of Gene Expression Data- Support Vector Machines Identifying Gene
Re	gulatory Networks and Gene Expression Data Modeling and Analysis of Gene Networks
	ng Foodback Control Clobal Cone Expression Assays Interactomics in Network
nh	armacology and Toxicology
	Unit – VI (Lab Component)
1.	Homology Modeling of Receptors
2.	Protein-Ligand Docking Studies
3	Modeling Protein-Protein Interactions
4	Modeling mutations and Single Nucleotide Polymorphisms
5	Modeling Nanopores for Sequencing DNA
6	Simulation of linid bilaver
	Cane Drediction
/.	Secondary and Tertiary Protein Structure Prediction
	Analysis of NGS (next generation sequencing) data
10	Conome apportation and Comparative Conomics studies
	pected Course Outcomes:
	ter going through this course the student will be able to:
	Di Onderstand the construction concepts of various genome maps and large scale sequencing
	<i>J2:</i> Develop magnostic tools for plant, animal and numan diseases
	D3: Understand now proteomics application in biological research can benefit in solving the
	complex biological and biochemical processes regardless of the type of organism
	which is the model for the research.
	D4: Analyze dynamic models and regulatory networks at cellular level
Re	iterence Books:
1.	Sangdun Choi. Systems Biology for Signaling Networks, Publisher-Springer, New York,
	2010. ISBN 978-1-4419-5796-2
2.	Andres Kriete, Roland Eils. Computational Systems Biology: From Molecular Mechanisms
	to Disease:, 2 nd Edition , Academic Press, 2013. ISBN 978-0-12-405926-9
3.	Edda Klipp, Ralf Herwig, Axel Kowald, ChristophWierling, Hans Lehrach Systems biology
	in practice: concepts, implementation and application, Wiley-VCH Verlag GmbH
	&Co.KGaA,Weinhein 2005.ISBN 978-3-527-31078-4
4.	Corrado Priami (Ed.). Transactions on Computational Systems Biology I. Springer-Verlag-
	Publisher, 2005.ISBN 3-540-25422-6
5.	Glenn Rowe. Theoretical Models in Biology, Oxford University Press – Publisher, Oxford
	1994. ISBN 0 19 859687 1.
Sc	heme of Continuous Internal Evaluation (CIE) for Theory
CI	E will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30
ma	irks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks
for	CIE (Theory) will be 100 marks.
Sc	heme of Continuous Internal Evaluation (CIE) for Practical
CI	E for the practical courses will be based on the performance of the student in the laboratory,
eve	ery week. The laboratory records will be evaluated for 40 marks. One test will be conducted

for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks. Mapping of COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	H	M	M	H	M	L	H	H	H	М	Η
CO2	Н	H	H	Н	M	M	M	H	L	Н	Η
CO3	M	L	L	H	H	M	M	M	L	Н	М
CO4	H	H	L	L	M	M	M	H	H	Н	Η
<u>.</u>	6.00		20	•		•	•	•	•		

		PSO1	PSO2	PSO3
	CO1	Н	L	L
	CO2	Н	Н	Н
Γ	CO3	Η	M	М
	CO4	Н	Н	Н

Data Warehousing and Mining										
Course Code	:	16MBI231		CIE Marks	:	100				
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100				
Credits	:	4		SEE Duration	:	3 hrs				
Course Learning Objectives (CLO):										
Graduates shall	be	able to:								
1. Underst	and	and analyse t	he architectures of RDBMS	and their models.						
2. Compre	hen	d the issues ir	n the warehousing design and	l patterns.						
3. Retrieve	e the	e data from di	fferent sources, organize and	present the data in	n di	ifferent				
formats.			_	-						
4. Practice	the	data analytic	al methods to prove the hypo	thesis and find ou	t th	e relationship				
between	the	e data sets.				-				
5. Accusto	me	d to data mini	ng algorithms and apply in th	ne field of bioinfor	ma	itics				
			Unit – I			11 Hrs				
Introduction	to	Data Warel	nousing: Heterogeneous	information, inte	gra	ation problem,				
Warehouse are	hit	ecture, ware	house vs DBMS. Aggres	gations: SQL a	nd	Aggregations,				
Aggregation fu	ncti	ons and Grou	ping. Data Warehouse Mod	els and OLAP Op	era	tions: Decision				
support; DataM	lart	s, OLAP vs	OLTP. Multi-Dimensional d	ata model. Dime	nsio	onal Modeling.				
ROLAP vs M) DL	AP; Star and	snowflake schemas; the N	IOLAP cube; rol	l-u	p, slicing, and				
pivoting.				,						
Unit – II 9 Hrs										
Issues in Data	N N	/arehouse De	sign: Monitoring, Wrapper	s, Integration, Da	ıta	cleaning, Data				

loa	ding, materialized views, Warehouse maintenance, OLAP servers and Metadata. Building								
Dat	ta Warehouses: Conceptual data modeling, Entity-Relationship (ER) modeling and Dimension								
mo	defing. Data warehouse design using ER approach. Aspects of building data warehouses.								
Tree	UIII – III 9 Hrs								
Introducing Data Mining: KDD Process, Problems and Techniques, Data Mining Applications,									
Str	usture Binding to Contexts. Desce. Task and Outputs								
Su	Unit IV								
D	Unit – IV 9 His								
	ta Mining Inputs and Outputs: Concepts, Instances, Attributes. Kinds of Learning, Kinds of								
	ributes and Preparing inputs. Knowledge representations - Decision tables and Decision trees,								
Cla	issification rules, Association rules, Regression trees & Model trees and Instance-Level								
rep									
Da	UIIII – V II Hrs								
	ta Mining Algorithms: One-R, Naive Bayes Classifier, Decision trees, Decision rules,								
ASS	Sociation Rules, Regression, K-Nearest Neignbor Classifiers. Evaluating Data Mining Results:								
	des in Evaluation; Training and Testing Principles; Error Measures, Holdout, Cross Validation.								
	mparing Algorithms; Taking costs into account and Trade-Offs in the Confusion Matrix.								
	pected Course Outcomes:								
	er gollig ulfougli ulls course the student will be able to:								
	1. Demonstrate the knowledge of specialized data warehousing methods								
CO2: Apply the statistical and computational methods for genome and protein data.									
	3: Able to work with the mining tools to help the decision support system								
	44: Interpret the data sets using concurrent statistical method.								
Re	rerence Books:								
1.	Jiawel Han, Micheline Kamper and Jian Pel. Data Mining: Concepts and Techniques, 3 ^w								
2	Fundamentals of Data Warehouses Matthias Jarke Maurizio Lenzerini Vannis Vassiliou								
2.	Panos Vassiliadis 2 nd edition. Springer Science & Business Media, 2002. ISBN 3540420894, 9783540420897								
3.	Ian H. Witten, Eibe Frank and Mark A. Hall. Data Mining: Practical Machine Learning Tools and Techniques, 3 rd edition Morgan Kaufman, 2011. ISBN 9780123748560								
4.	Ralph Kimball, Margy Ross, Bob Becker, Joy Mundy, Warren Thornthwaite. Kimball's Data								
	Warehouse Toolkit Classics: The Data Warehouse Toolkit, 2nd Edition; Wiley, 2009. ISBN								
	0470479574, 9780470479575								
5.	Data Mining: Introductory and Advanced Topics by Margaret H. Dunham., Pearson								
	Education India, 2006. ISBN 8177587854, 9788177587852								
Sch	neme of Continuous Internal Evaluation (CIE) for Theory								
CIE	E will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30								
ma	rks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks								
for	CIE (Theory) will be 100 marks.								
Sch	neme of Semester End Examination (SEE) for Theory								
The	e question paper will have FIVE questions with internal choice from each unit. Each question								
wil	l carry 20 marks. Student will have to answer one question from each unit. The total marks for								
SE	E (Theory) will be 100 marks.								

Mapping of COs with POs												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
CO1	L	H	H	M	H	H	L	-	- L		-	
CO2	Η	M	Н	H	H	H	-	M	H	-	-	
CO3	Η	H	H	H	H	H	L	-	H	-	Н	
CO4	Η	H	M	H	H	M	L	M	M	L	M	
Mapping of COs with PSOs												
				PSO1		PSO2			PSO3			
		C01		L			L		L			
		CO2		Η			Н		Η			
		CO3		L		М			Н			
		CO 4		L			Н		Н			

	Artificial Intelligence										
Course Code	•	16MBI232		CIE Marks	\Box	100					
Hrs/Week	•	I .T.P.S	/.0.0.0	SEE Marks		100					
Credite	•		0.0.0	SEE Duration		100 2 have					
Creates : 4 SEE Duration : 5 IFS											
Course Learning Objectives (CLO):											
Graduates shall	De	able to									
1. Understand t	ne i	Dasic concepts	of Artificial Intelligence								
2. Explore the a	ippi	lications of art	ificial intelligence in bioinfo	ormatics		, .					
3. Apply basic s	sear	ch algorithms	for problem solving; knowle	edge representatio	n ai	nd reasoning.					
4. Perform patte	ern	recognition an	id processing with the applic	ation of fuzzy log	ic a	nd neural nets.					
5. Design the ir	itel	ligent systems	that can solve general purp	ose problems, rep	rese	ent and process					
knowled	lge,	, plan and act,	reason under uncertainty.								
	Unit – 1 10 Hrs										
Introduction to Artificial Intelligence: Introduction to Artificial Intelligence, Problems,											
Approaches an	d t	ools for Artif	ficial Intelligence. Introduc	tion to search, S	bear	ch algorithms,					
Heuristic search	ı m	ethods, Optim	al search strategies. Use of g	raphs in Bioinfor	mat	ics. Grammers,					
Languages and	Au	tomata. Currei	nt Techniques of Artificial In	telligence: Probab	oilis	tic approaches:					
Introduction to	pro	bability, Baye	s' theorem, Bayesian networ	ks and Markov ne	two	orks.					
	•	<u> </u>	Unit – II			10 Hrs					
Classification	Μ	ethods: Line	ar Classifiers & Logisti	c Regression, L	ine	ar Classifiers,					
Overfitting & I	Reg	ularization in	Logistic Regression, Decisi	ion Trees, Preven	ting	Overfitting in					
Decision Trees	. H	andling Miss	ing Data. Clustering and r	etrieval of data.	Ne	arest Neighbor					
Search. Cluster	ing	with k-means.	Hierarchical Clustering.	,		0					
			Unit – III			10 Hrs					
Introduction –	Age	ents– Problem	1 formulationuninformed	l search strategie	-5	– heuristics –					
informed searc	h s	trategies – co	instraint satisfaction. Study	of Ethical, legal	an	d social issues					
associated with	AL		instraint satisfaction. Stady	or Luncul, regu	un	a social issues					
		-	Unit – IV			10 Hrs					
Supervised lear	rnir	g (parametric	/non-parametric_algorithms.	support vector i	mac	hines, kernels,					
neural network	S.	Unsupervised	learning (clustering dime	nsionality reducti	ion	recommender					
nearth network	,	<u>ensuperviseu</u>	rearring (crustering, unite	instanting reducti		recommender					

systems, deep learning, Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI, Support vector machines (SVMs), case studies and											
applications.											
Unit – V 10 Hrs											
Genetic programming – Method, Applications, Guidelines and Bioinformatics applications. Boolean Networks, Bayesian Networks and Fuzzy Neural Networks with case studies. Learning from observation - Inductive learning – Decision trees – Explanation based learning – Statistical Learning methods - Reinforcement Learning											
Expected Course Outcomes:											
After going through this course the student will be able to:											
CO1: Learn about concepts of artificial intelligence and their applications in Bioinformatics											
CO2: Understand the basic ideas and techniques underlying the design of intelligent compu	er										
systems											
CO3: Use the knowledge acquired for both problem solving and for reasoning.											
CO4: Focus on problems, the ethical, legal and social issues involved in the field of AI and u	se										
the techniques and algorithms to address those problems.											
Reference Books:											
1. Intelligent Bioinformatics: The Application of Artificial Intelligence Techniques to											
and Song 2005 ISDN 0780470021750											
and Sons, 2005. ISBN 9780470021750.											
2. Artificial intelligence: A wodern Approach by Stuart Jonathan Russen and Peter Norvig. Prentice Hall 2010 ISBN 0-13-604259-7											
3 Machine Learning Approaches to Bioinformatics by Zheng Rong Vang World Scientific											
Publishing Co. Pte. Ltd. 2010 ISBN 981-4287-30-X											
4. Computational Intelligence in Biomedicine and Bioinformatics: Current Trends a	nd										
Applications, by Tomasz G. Smolinski, Mariofanna G. Milanova, Aboul Ella Hassanie	en.										
(Eds.) Published by Springer-Verlag Berlin Heidelberg, 2009.ISBN 978-3-540-70776-9											
5. Artificial Intelligence: Structures and Strategies for complex problem solving by George F.											
Luger, Fourth Edition, Pearson Education, 2002.ISBN 9780201648669											
Scheme of Continuous Internal Evaluation (CIE) for Theory											
CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for	30										
marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total mar	ks										
for CIE (Theory) will be 100 marks.											
Scheme of Semester End Examination (SEE) for Theory											
The question paper will have FIVE questions with internal choice from each unit. Each questi	on										
will carry 20 marks. Student will have to answer one question from each unit. The total marks	or										
SEE (Theory) will be 100 marks.											
Mapping of COs with POs	1										
POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO1 CO1 H L M L H L M L											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-										
Mapping of COs with PSOs											
PSO1 PSO2 PSO3											

CO1	L	М	L	
CO2	L	М	М	I
CO3	М	Н	Н	1
CO4	L	L	Н	1

Insilico Drug Design										
Course Code	:	16MBI241		CIE Marks	:	100				
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100				
Credits	:	4		SEE Duration	:	3 hrs				
Course Learning Objectives (CLO):										
Graduates shall	be	able to								
1. Understand t	he ı	underlying prin	nciples of molecular modelin	ng and simulation	inv	olved in drug				
design a	nd	discovery.								
2. Explore conc	ept	ually the techr	iques employed in Model bu	uilding, Library de	esig	n and				
Molecul	ar i	interaction stu		4 • • 4 4		· · /1				
3. Synchronize	COI Dha	nputational too	ois and techniques to empow	er the insights and	1 ac	lvances in the				
IIEIU OI	Pila	umacy www.Machina	looping and numerical tachni	gues to cope up t	.;+b	the current				
4. Apply Evolut	1011 n n	harmacoutical		iques to cope up w	/101	ule current				
5 Design and d	n p	lon workflow	s for building molecular com	nleves						
Unit – I 10 Hrs										
Drug Design Process: Computer - Assisted Drug Discovery: Drug Discovery and Development										
process. Compo	nin	d searching. T	arget Identification. Target (haracterisation. S	tud	v of molecular				
interactions be	twe	en target and	l compound (docking), AE	MET Studies ar	nd	Study of drug				
resistance. Drug	g de	esign process f	for a known protein target – S	Structure based dr	ug	design process,				
Finding initial I	nits	, Compound r	efinement, ADMET Studies	and Study of dru	g re	esistance. Drug				
design process	for	unknown pro	tein target – Ligand based (drug design proce	ess,	Finding initial				
hits, Compound	l re	finement, ADI	MET Studies and Study of dr	ug resistance. Cas	e s	tudies				
			Unit – II			9 Hrs				
Compound Li	bra	ry Design: Ta	arget library vs Diverse libr	aries, Non-Enume	erat	ive techniques,				
Drug likeliness	and	l Synthetic aco	cessibility, Analyzing diversi	ty and Spanning k	nov	wn chemistries.				
Compound sele	ctic	on techniques.								
			Unit – III			10 Hrs				
Homology M	ode	eling and I	Drug Design: Structure	Generation, Re	trie	val, Structure				
Visualization.	Hoi	mology mode	ling - Constructing an in	iitial model, Ref	inii	ig the model,				
Manipulating t	he	model, Navi	gation of the model. Mod	el evaluation –	Mo	del evaluation				
techniques, Cor	icel	pt of energy m	inimization and Energy min	imization techniq	ues	. Conformation				
generation, Der	1VII bori	ig Dioactive C	onformations, Molecular sup	perposition and al	ign	ment, Deriving				
similarition and	liuti I C	ic patterii, Re	n tochniquos Dational Dry	ung biological ac	uvi hor	nical Intuition				
Important Key	and	the Role of th	n techniques. Kauonal Diu ne Molecular Model Limitati	ions of Chemical 1	nell ntu	uition				
	unu				mu	10 Hrc				
						101115				

М	alagulau Machaniau Introduction to Malagulau machanica. Eauca fields fau duug dasign Studu
of	protein folding. Algorithms Conformation analysis Docking. Introduction Search
alc	worithms Scoring functions Docking Process – Protein Prenaration Building the ligand
	tting the bounding box Running the docking calculations Building the Pharmacophore
M	odels: Components of Pharmacophore model. Creating a Pharmacophore model from active
	mounds Creating Pharmacophore model from Active site and Searching compound
dat	tabases.
	Unit – V 9 Hrs
Qı	antum Mechanics in Drug Design: QSAR: Conventional QSAR vs 3D-QSAR, QSAR
Pro	ocess, Molecular descriptors, Automated QSAR Programs. 3D-QSAR – 3D-QSAR Process.
Qu	antum Mechanics algorithms in Drug design, ADMET and Toxicity studies. New Lead
Di	scovery Strategies. Composition of Drug Discovery teams, Current Practice of CADD in the
Ph	armaceutical industry, Management structures of CADD groups, Contributions and
acl	hievements of CADD groups, Limitations of CADD support, Inherent Limitations of CADD
su	pport. State of Current Computational Models, Software and Hardware constraints
Ex	spected Course Outcomes:
Af	ter going through this course the student will be able to:
CC	D1: Demonstrate the knowledge of physical and chemical properties of pharmacological
	compounds.
	D2: Apply the drug designing methods for screening and inventing the new targets and drugs.
	D3: Able to estimate the relevant drug capabilities of known and unknown compounds.
	D4: To equip with the drug design skills and patenting ability and spread awareness about the
	compounds.
Re	eference Books:
1.	Cancer Drug Design and Discovery <i>by Stephen Neidle</i> , Academic Press – <i>Publisher</i> , 2008. <i>ISBN</i> 0123694485, 9780123694485
2.	Bioinformatics Technologies by Yi-Ping Phoebe Chen, Springer Science & Business Media,
	2005. ISBN 354026888X, 9783540268888
3.	Textbook of drug design and discovery by Kristian Stromgaard, Povl Krogsgaard-Larsen,
	Ulf Madsen, 5th edition. Published by CRC Press, LLC, 2016. ISBN1498702783,
	9781498702782
4.	Computational Drug Design: A Guide for Computational and Medicinal Chemists by
	David. C. Young, Wiley-Interscience, 2009. ISBN: 978-0-470-12685-1
5.	Drug Discovery Strategies and Methods by Alexandros Makriyannis, Diane Biegel and
	Marcel Dekker, CRC Press, 2003. ISBN 0203913272, 9780203913277
SC	heme of Continuous Internal Evaluation (CIE) for Theory
	E will consist of TWO lests, TWO Quizzes and ONE assignment. The test will be for 30
ma	arks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks
for	CLE (Theory) will be 100 marks.
	neme of Semester End Examination (SEE) for Theory
	le question paper will have FIVE questions with internal choice from each unit. Each question
	II Carry 20 marks. Student will have to answer one question from each unit. The total marks for $\frac{1}{2}$
SE	LE (Theory) will be 100 marks.

Mappir	Mapping of COs with POs											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
CO1	H	L	-	H	H	H	-	-	L	-	М	
CO2	H	M	L	H	H	H	L	L	M	L	L	
CO3	M	-	-	M	M	H	-	-	M	-	L	
CO4	H	M	-	H	M	H	-	-	H	-	М	
Mappir	ng of CC	Os with P	SOs									
				PSO1		P	PSO2		PSO3			
		CO1		Μ			_		-			
		CO2		Η			Н		Μ			
		CO3		Н			Н		L			
		CO 4		Μ		Н			M			

			Pharmacogenomics							
Course Code	••	16MBI242		CIE Marks	:	100				
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100				
Credits	:	4		SEE Duration	:	3 hrs				
Course Learni	Course Learning Objectives (CLO):									
Graduates shall be able to										

1. Understand the role of genetic variability in phase II metabolizing enzymes o pharmacokinetics, efficacy, and toxicity.	n drug
2. Apply knowledge to explain or predict the role of genetic variability in drug targets of efficacy and toxicity.	on drug
3. Describe the molecular basis for a genetic variation influencing the functional activity o	of phase
II metabolizing enzymes.	-
4. Discuss clinical data supporting a role for efflux transporters in bioavailability, CNS exp	posure
and tumor resistance.	
5. Analyse the allele-specific variation in human gene expression.	
Unit – I	10 Hrs
Concepts of Pharmacogenetics: Introduction, basic concepts about genetic di	iseases.
Personalized medicine- introduction and importance. The genetics of therapeutic targe	ets and
gene-based targets. Pharmacogenomics necessity in drug designing. Detoxification	on and
poisoning. Drug discovery and approval. Pharmacogenomics and Pharmacognosy. Po	lygenic
Nature of Drug Response: Antidepressants. Metabolic changes of drugs and related	organic
	0 Um
Unit – II Delymorphisms Introduction types and importance in Dyng targets Dyndiction of sta	9 Hrs
changes among sequences by the influence of polymorphisms. Constic analysis of	human
variation Microsatellite for studying genetic variation Critical analysis of genomic asso	ciption
Pharmacogenomics and Drug Transport Approaches to pharmacogenomics studies	ciation.
Unit – III	10 Hrs
Pharmacogenomics and Drug response: Structural influence in the Drug response	e. Dose
dependent and independent drug response, Efficacy and metabolism of drugs. Drug meta	abolism
pathways and adverse drug reactions. hematotoxicity :leukopenia, pancytopenia, hepatot	toxicity
and case studies, pancreatitis, gastrointestinal disturbances (eg. nausea, vomiting, diarrhoe	
like symptoms such as fever, headache. Rash: Arthralgia, Myalgia. Crohn's Disease and	ea), flu-
Myelosuppression	ea), flu- Severe
	ea), flu- Severe
Unit – IV	ea), flu- Severe 10 Hrs
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD).	ea), flu- Severe 10 Hrs Process
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). I in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identif	ea), flu- Severe 10 Hrs Process ication,
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). I in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identifi ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Inf	10 Hrs Process ication, fectious
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). I in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identify ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Inf Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressan	ea), flu- Severe 10 Hrs Process fication, fectious nts and
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). I in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identifi ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Infi Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressan hepatitis C Pharmacogenomics related Case studies and discussion.	ea), flu- Severe 10 Hrs Process fication, fectious nts and
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). I in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identify ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Inf Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressat hepatitis C Pharmacogenomics related Case studies and discussion. Unit – V	10 Hrs Process ication, fectious nts and 9 Hrs
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). It in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identify ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Info Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressation hepatitis C Pharmacogenomics related Case studies and discussion. Unit – V Allele-Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Care Expression: Genome-Wide Analysis of Care Furgranian Using Olige Migragenese Dashe Amali Chin, Using Chine, Using C	ea), flu- Severe 10 Hrs Process fication, fectious nts and 9 Hrs Allele
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). I in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identify ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Inf Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressat hepatitis C Pharmacogenomics related Case studies and discussion. Unit – V Allele-Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Gene Expression Using Oligo Microarrays, Roche Ampli Chip, HaploChIP: An Accease Accessition Studies in Dharmacogenomics Dharmacogenomics of Anticoagulation	10 Hrs Process ication, fectious nts and 9 Hrs Allele in vivo
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). It in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identify ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Infe Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressate hepatitis C Pharmacogenomics related Case studies and discussion. Unit – V Allele-Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Gene Expression Using Oligo Microarrays, Roche Ampli Chip, HaploChIP: An Assay. Association Studies in Pharmacogenomics-Pharmacogenomics of Anticoagulation Ethical issues for Pharmacogenomics: Pharmacogenomics and recent trends of Pharmacogenomics	ea), flu- Severe 10 Hrs Process fication, fectious nts and 9 Hrs f Allele in vivo a drugs.
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). I in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identify ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Inf Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressat hepatitis C Pharmacogenomics related Case studies and discussion. Unit – V Allele-Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Gene Expression Using Oligo Microarrays, Roche Ampli Chip, HaploChIP: An Assay. Association Studies in Pharmacogenomics-Pharmacogenomics of Anticoagulation Ethical issues for Pharmacogenomics; Pharmacogenomics and recent trends of Pharmaceu Exprested Course Outcomes:	ea), flu- Severe 10 Hrs Process fication, fectious nts and 9 Hrs Allele in vivo a drugs. nticals.
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). It in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identify ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Infe Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressate hepatitis C Pharmacogenomics related Case studies and discussion. Unit – V Allele-Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Gene Expression Using Oligo Microarrays, Roche Ampli Chip, HaploChIP: An Assay. Association Studies in Pharmacogenomics-Pharmacogenomics of Anticoagulation Ethical issues for Pharmacogenomics; Pharmacogenomics and recent trends of Pharmaceu Expected Course Outcomes: After going through this course the student will be able to:	10 Hrs Process fication, fectious nts and 9 Hrs Allele in vivo a drugs. ticals.
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). If in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identific ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Infi Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressate hepatitis C Pharmacogenomics related Case studies and discussion. Unit – V Allele-Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Gene Expression Using Oligo Microarrays, Roche Ampli Chip, HaploChIP: An Assay. Association Studies in Pharmacogenomics-Pharmacogenomics of Anticoagulation Ethical issues for Pharmacogenomics; Pharmacogenomics and recent trends of Pharmaceu Expected Course Outcomes: After going through this course the student will be able to: CO1. Demonstrate an understanding of the complexity of most drug responses (i.e. the student will be able to:	ea), flu- Severe 10 Hrs Process fication, fectious nts and 9 Hrs Allele in vivo a drugs. nticals.
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). It in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identific ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Infi Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressate hepatitis C Pharmacogenomics related Case studies and discussion. Unit – V Allele-Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Gene Expression Using Oligo Microarrays, Roche Ampli Chip, HaploChIP: An Assay. Association Studies in Pharmacogenomics-Pharmacogenomics of Anticoagulation Ethical issues for Pharmacogenomics; Pharmacogenomics and recent trends of Pharmaceu Expected Course Outcomes: After going through this course the student will be able to: CO1. Demonstrate an understanding of the complexity of most drug responses (i.e. thresponse cascades), and the influence this has on the contribution of genetic variation	a), flu- Severe 10 Hrs Process fication, fectious nts and 9 Hrs Allele in vivo n drugs. ticals. he drug pility to
Unit – IV Pharmacogenomics Analysis Tools: Pharmacokinetics (PK), Pharmacodynamics (PD). I in Structural Pharmacogenomics- Target Structure optimization, Validation, lead identif ADME prediction, synthesis, assays and Clinical trials, Treatment of Cancer and Inf Diseases. Pharmacogenomics of Adverse Drug Reactions. Warfarin, immune suppressathepatitis C Pharmacogenomics related Case studies and discussion. Unit – V Allele-Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Variation in Human Gene Expression: Genome-Wide Analysis of Specific Gene Expression Using Oligo Microarrays, Roche Ampli Chip, HaploChIP: An Assay. Association Studies in Pharmacogenomics-Pharmacogenomics of Anticoagulation Ethical issues for Pharmacogenomics; Pharmacogenomics and recent trends of Pharmaceu Expected Course Outcomes: After going through this course the student will be able to: CO1. Demonstrate an understanding of the complexity of most drug responses (i.e. thresponse cascades), and the influence this has on the contribution of geneti	ea), flu- Severe 10 Hrs Process fication, fectious nts and 9 Hrs Allele in vivo a drugs. tticals.

individualization of drug therapy.

- CO3: Describe the risks and values that genomic information brings to the drug discovery and development process
- CO4: Identify key regulatory issues that pharmacogenomics raises in the drug development process

Reference Books:

- 1. Pharmacogenomics: Challenges and Opportunities in Therapeutic Implementation by Yui-Wing Francis Lam, Larisa H. Cavallari. Academic Press, 2013. ISBN: 0123983037, 9780123983039
- 2. Pharmacogenomics in Clinical Therapeutics by Pharmacogenomics in Clinical Therapeutics. John Wiley & Sons, 2012. ISBN: 1119959586, 9781119959588
- Pharmacogenomics An Introduction and Clinical Perspective by Joseph S. Bertino, Angela Kashuba, Joseph D. Ma, Uwe Fuhr, C. Lindsay DeVane. McGraw Hill Professional, 2012. ISBN: 0071813713, 9780071813716
- 4. Pharmacogenomic Testing in Current Clinical Practice: Implementation in the Clinical Laboratory Molecular and Translational Medicine by Alan H. B. Wu, Kiang-Teck J. Yeo. Springer Science & Business Media, 2011. ISBN:1607612836, 9781607612834
- 5. Concepts in Pharmacogenomics EBSCO ebook academic collection by Martin M. Zdanowicz. ASHP, 2010. ISBN 1585282340, 9781585282340

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Map	Mapping of COs with POs														
	PO	D1	PO) 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	F	2010	PO11	
CO	1	-]	M	-	H	L	Н	-	-	-		-	М	
CO	2	Μ]	М	Μ	L	H	M	-	-	M		М	М	
CO	3	Η		H	Μ	M	H	M	-	-	M		Η	L	
CO	4	L		L	Μ	L	M	H	-	-	L		Η	-	
Mapping of COs with PSOs															
				PSC	PSO1		SO2		PSO3						
	C01				Μ	[-			-					
	CO2				Н		Н			М					
			(C O 3		Н		Н			L				
			(C O 4		М		Н			М				
					Essen	tial Pro	gramm	ing in E	Bioinfor	rmatics					
Cou	rse Co	ode	:	16N	/IBI251	-			C	IE Marks		:	100		
Hrs/	Week		:	L:T	:P:S		4:0:0	:0	SI	E E Marl	KS	:	100		
Cred	lits		:	4						SEE Duration : 3			3 hrs		
Cou	rse Le	earni	ng	Obje	ctives (CLO):									

Graduates shall be able to

- 1. Explore conceptually programming applications in the domains of Life sciences and in general study the role of computer science in life sciences
- 2. Acquire knowledge of the Object Oriented Programming and Advanced programming skills in Java
- 3. Study Threading, Event management, Database connectivity as well as Web programming in Java
- 4. Understand the importance of Threading, Event management, Database connectivity as well as Web programming to High throughput data analysis
- 5. Explore practically the applications of BioJava to sequence, structure and micro-array data analysis

Unit – I10 HrsIntroduction to Java: Java and Java applications. Java Development Kit (JDK). Java Basics –
Data Bytes, Operators, Statements and Object-oriented programming. Classes, Inheritance,
Exceptions: Classes. Classes in Java - Declaring a class, Class name, Super classes, Constructors.
Creating instances of class. Inner classes. Inheritance: Simple, multiple, and multilevel
inheritance; Overriding, overloading. Exception Handling in Java.

Unit – II9 HrsMulti-Threaded Programming, Event Handling: Multi Programming: Extending threads;Implementing rentable. Synchronization, Changing state of the thread. Bounded buffer problems,Read-write problem, Producer-Consumer problems. Event Handling: Two event handlingmechanisms, Delegation event model, Event classes; Sources of events; Event listener interfaces.Delegation event model; Adapter classes; Inner classes.

Unit – III

10 Hrs

Applets: The Applet Class: Two types of Applets, Applet basics, Applet Architecture, An Applet skeleton; The HTML APPLET tag; Passing parameters to Applets, Simple Applet display methods; Requesting repainting; Using the Status Window. getDocumentbase() and getCodebase(); ApletContext and showDocument(); The AudioClip Interface; The AppletStub Interface;

Drawing Lines; Drawing Other Stuff; Color; Mouse Input; Keyboard Input and Output to the Console. Threads and Animation, Backbuffers, Graphics and Painting; Clocks. Playing with text: Introduction to 2D arrays and hyperlinks, 3D Graphics - Basic classes.

Unit – IV10 HrsJava 2 Enterprise Edition Overview, Database Access: The Concept of JDBC; JDBC DriverTypes; JDBC Packages; A Brief Overview of the JDBC process; Database Connection;Associating the JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet;Transaction Processing; Metadata, Data types; Exceptions. Servlets: Background; The Life Cycleof a Servlet; Simple Servlet; The Servlet API. The Javax.servlet Package. ReadingParameter, Handling HTTP Requests and Responses. Cookies and Session Tracking.

Unit – V

9 Hrs

BioJava: Working with Nucleic Acid and Protein Sequences – create, read, compare sequences. Working with Protein Structures – fetching, parsing PDB structures, Calculating structure alignment, interacting with Jmol. Sequence alignment – performing global, local and multiple sequence alignment. BioJava and Nextgen sequencing.

Expected Course Outcomes:

After going through this course the student will be able to:

- CO1: Define and explain concepts of Object Oriented Programming along with Threading, Event management, Database connectivity as well as Web programming
- CO2: Apply Threading, Event management, Database connectivity as well as Web programming to solve the problems in the area of Big Data Analytics

CO3: Analyze and evaluate efficiency threading and multithreading with case studies

CO4: Design and implement basic algorithms to perform high throughput data analysis in the field Sequence and structure analysis

Reference Books:

- 1. Java The Complete Reference, 9th edition, by Herbert Schildt, McGraw Hill Education, 2014. ISBN: 0071808558 ISBN-13: 978-0071808552
- 2. Introduction to Java Programming, Comprehensive Version, 10th edition by Y. Daniel Liang, Prentice Hall of India, 2013. ISBN-13: 978-0133761313
- 3. BioJava: A Programing Guide by Kaladhar D.S.V.G.K. LAP LAMBERT Academic Publishing 2012 ISBN-13: 978-3659167508

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of COs with POs	
-------------------------	--

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	H	L	-	H	H	Н	-	-	L	-	М
CO2	Н	M	L	Н	H	Н	L	L	M	L	L
CO3	M	-	-	M	M	Н	-	-	M	-	L
CO4	H	M	-	H	M	H	-	-	Н	-	М

0		PSO1	PSO2	PSO3
	C01	L	М	М
	CO2	Н	Н	Н
	CO3	М	Н	Н
	CO4	Н	Н	Н

High Performance Bio-Computing									
Course Code	:	16MBI252		CIE Marks	:	100			
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100			
Credits	:	4		SEE Duration	:	3 hrs			
Course Learning Objectives (CLO):									
Graduates shall be able to									

1. 1. To impart the basic concepts of High performance computing in applied bioinformatics. 2. To understand and explain the role of HPC in large data driven operations. 3. To compare the difference in normal computing and HPC processing speed. 4. To develop basic scripts to run the commands in HPC 5. Unit – I 10 Hrs **Introduction to HPC** Introduction to Linux operating system, Basic commands used in HPC cluster, Major components and its functions in HPC Cluster- head node, login node, interactive node, compute node, I/O node, Hardware architecture of HPC-processor design, cache architectures, design and evaluation techniques, operating systems and compilers, communications libraries, programming strategies for vector and parallel computers, optimization strategies, grid computing. Unit – II 9 Hrs Introduction to shell scripting Basics of shell scripting, invocation, variables, if-then-else. Loops, Workflows and nested workflows, How to submit and monitor workflow execution. HPC Data Storage, Serial and parallel batch jobs and scripting to run processes in parallel. Unit – III 10 Hrs **Big Data analytics** Introduction of Cloud computing, Hadoop architecture. MIKE2.0, Multiple layer architecture, Distributed Parallel architecture, NGS data analysis using Hadoop. Unit – IV 9 Hrs **Installation of Software Packages** Install R packages, Perl modules, Python modules and general software packages. Molecular dynamics and use of VMD Software's and tools used to access HPC cluster with examples. Applications of High performance Computing in the field of Bioinformatics. Unit – V 10 Hrs High throughput data analysis with HPC Conversion of SRA files, FASTQC analysis using HPC – Command and tools required, interpretation of results. Adapter trimming, Alignment, Variant calling, Performing BLAST search, interpretation of results. Comparison of the results from various tools using HPC. **Expected Course Outcomes:** After going through this course the student will be able to: CO1: Understand the basic knowledge of High Performance Computing CO2: Describe architectural hardware for high performance computing systems and installation of software packages CO3: Analyze and apply the appropriate tools and techniques to perform high throughput data analysis CO4. Develop parallel software tools using High Performance Computing **Reference Books:** Bioinformatics for High Throughput Sequencing By Naiara Rodríguez-Ezpeleta, Michael 1. Hackenberg, Ana M. Aransay. | ISBN-13: 9781461407812 Review of "Next-generation DNA sequencing informatics" by Stuart M. Brown 2013. Cold 2. Spring Harbor Laboratory Press, Cold Spring Harbor: New York. ISBN-13: 978-1936113873

	Kwon, Steven C. Ricke ISBN: 978-1-61779-088-1 (Print) 978-1-61779-089-8											
4.	High Performance Computing by Kevin Autor Dowd, Michael Kosta Loukides.O'Reilly &											
	Associates, 1993.ISBN 1565920325, 9781565920323											
5.	. Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Karypis, and											
Vipin Kumar, 2nd edition, Addison-Welsey, ISBN-13: 978-0201648652												
Sch	Scheme of Continuous Internal Evaluation (CIE) for Theory											
CIE	CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30											e for 30
ma	rks e	each and	l the quiz	2 for 10	marks ea	ich. The	assignm	ent will	be for 20) marks	. The tot	al marks
for	CIE	(Theor	y) will b	e 100 m	narks.							
Sch	neme	e of Sen	nester E	nd Exa	mination	1 (SEE)	for The	ory				
The	e que	estion p	aper will	have F	FIVE que	stions w	ith inter	nal choic	e from e	each un	it. Each	question
wil	l car	ry 20 m	arks. Stu	ident w	ill have to	o answer	one que	estion fro	om each	unit. Th	ie total n	arks for
SE	E (T	heory) v	will be 1	00 marl	KS.							
Ma	ppin	ig of CC)s with P	Os								
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
	01	Η	M	M	M	M	M	L	-	L	L	M
C	O 2	Μ	H	Н	Μ	H	M	M	L	M	L	Μ
C	O 3	Μ	H	Н	Н	M	H	H M H		M	Н	
C	O4	L	L	H	Μ	M	H	M	M	H	M	M
Ma	ppin	ig of CC)s with P	SOs								
					PSO1		PSO2			PSO3		
			CO1		CO1 L		-			-		
			CO2		CO2 L		М			Μ		
			CO3	M			Н			Η		
			CO4		Н	[Η		Η		