

R.V. College of Engineering, Bengaluru – 59

(Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi) Department of Mechanical Engineering

Vision:

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

Mission:

- Imparting knowledge in basic and applied areas of Mechanical Engineering.
- Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- Facilitating faculty development through continuous improvement programs.
- Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs

Program Educational Objectives (PEO)

The Graduates of M. Tech. in Computer Integrated Manufacturing Program will be prepared for:

- **PEO 1.** Practicing design and implementation of computer integrated manufacturing systems through the application of the fundamental knowledge and skills of Mechanical Engineering
- **PEO 2.** Enhancing their skills through training, independent inquiry, and professional development
- **PEO 3.** Working independently as well as collaboratively, while demonstrating the professional and ethical responsibilities of the engineering profession.
- PEO 4. Pursuing higher studies at Doctoral level in multidisciplinary areas of Automation

Program Outcomes (PO)

- M. Tech. in Computer Integrated Manufacturing Graduates will be able to:
- **PO 1.** Engineering Knowledge: Apply knowledge of manufacturing engineering and management principles to design and evaluate automated manufacturing systems.
- **PO 2. Problem Analysis**: Analyze problems of manufacturing and industrial systems to formulate the design requirements for CIM systems.

- **PO 3. Design/Development of Solutions**: Design, implement, and evaluate advanced manufacturing systems and processes, with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **PO 4.** Modern Tool Usage: Design, conduct and analyze experiments using domain knowledge and concepts of design of experiments to arrive at valid conclusions.
- **PO 5.** The Engineer and Society: Use state of the art engineering tools and techniques for design and operation of advanced manufacturing systems.
- **PO 6.** Environment and Sustainability: Develop manufacturing systems using the knowledge of contemporary issues.
- **PO 7.** Ethics: Apply professional, ethical, legal, security and social issues in the design of manufacturing systems.
- **PO 8.** Individual and Teamwork: Function effectively, individually and in teams, on diverse and multidisciplinary environments to accomplish common goals.
- **PO 9.** Communication: Communicate effectively with diversified groups to motivate and exhibit leadership qualities in the management of an enterprise.
- **PO 10. Project Management and Finance**: Apply the principles of project management for effective execution of manufacturing projects.
- **PO 11.** Life-long Learning: Pursue life-long learning as a means of enhancing the knowledge and skills.

Program: M.Tech in Computer Integrated Manufacturing

Program Specific Criteria (PSC):

Lead Society: Society of Manufacturing Engineers

These program criteria apply to engineering programs that include "manufacturing" or similar modifiers in their titles.

The program must prepare graduates to have proficiency in automation and manufacturing processes: ability to design manufacturing processes that result in products that meet specific automation and other related requirements. Process, assembly and product engineering: ability to design, tooling and analyse the environment necessary for their manufacture. Manufacturing competitiveness: ability to create competitive advantage through manufacturing planning, strategy, quality, and control. Manufacturing systems design: ability to analyze, synthesize, and control manufacturing operations using statistical methods. Manufacturing laboratory or facility experience: ability to measure manufacturing process variables and develop technical inferences about the process.

The faculty members of the program possess in-depth understanding and expertise in their areas of specialization with a commitment to periodically update their knowledge in respective domains.

Program Specific Outcomes (PSO)

- M. Tech. in Computer Integrated Manufacturing Graduates will be able to:
- **PSO1.** Design subsystems of Computer Integrated Manufacturing systems by integrating automation with mechanical systems in manufacturing, assembly and testing
- **PSO2.** Develop advanced tools for evaluating performance of automated systems and for data automation with respect to materials, machines and other resources.

R. V. College of Engineering, Bengaluru – 59.

(An Autonomous Institution Affiliated to Visvesvaraya Technological University,, Belagavi) Department of Mechanical Engineering

		F	IRST S	EMESTER	2				
			BoS CREDIT ALLOCATION						
Sl.	Course			Lecture	Tutorial	Practical	Self Study	Total	
No	Code	Course Title		L	Т	Р	S	Credits	
1	16MEM11 P	Project Management	IM	3	1	0	0	4	
2	16MAT12 B	Probability & Statistics for Engineers	MA	4	0	0	0	4	
3	16MCM13	Computer Control of Manufacturing Systems (Theory & Practice)	ME	4	0	1	0	5	
4	16MCM14	Computer Aided Design	ME	4	0	0	1	5	
5	16MCM15 X	Elective 1	ME	4	0	0	0	4	
6	16HSS16	Professional Skill Development	ME	0	0	2	0	2	
		Total		19	1	3	1	24	

]	Elective 1	
16MCM151	Digital Manufacturing	16MCM152	Hydraulic and Pneumatic Systems

R. V. College of Engineering, Bengaluru – 59. (An Autonomous Institution Affiliated to Visvesvaraya Technological University,, Belagavi) Department of Mechanical Engineering

		SE	COND	SEMESTI	ER			
			BoS		CREDIT	ALLOCATI	ON	Total
Sl.	Course			Lecture	Tutorial	Practical	Self Study	Credits
No	Code	Course Title		L	Т	Р	S	
1	16MEM21R	Research Methodology	IM	3	1	0	0	4
2	16MCM22	Mechatronic Systems	ME	4	0	1	0	5
		(Theory & Practice)						
3	16MCM23X	Elective 2	ME	4	0	0	0	4
4	16MCM24X	Elective 3	ME	4	0	0	0	4
5	16MCM25X	Elective 4	ME	4	0	0	0	4
6	16MCM26	Minor Project	ME	0	0	5	0	5
		Total		19	1	6	0	26

Elective - 2						
16MCM231 / 16MTE231Non Traditional Machining and Testing16MPD232/16MCM232Design of Machine Toc						
Elective - 3						
16MCM241/16MTE241	Tooling for Manufacture in Automation	16MMD242/16MCM242	Industrial Robotics			
	Elective - 4					
16MCM251	Automation and Production Systems	16MCM252	Computer Aided Process			

R. V. College of Engineering, Bengaluru – 59.

(An Autonomous Institution affiliated to VTU, Belagavi)

Department of Mechanical Engineering

THIRD SEMESTER										
Sl.	Course Code	Course Title	BoS	CREDIT ALLOCATION Total						
No				Lecture	Tutorial	Practical	Self Study	Credits		
				\mathbf{L}	Т	Р	S			
1	16MCM31	Computer Aided Engineering	ME	4	0	1	0	5		
		(Theory & Practice)								
2	16MCM32X	Elective - 5	ME	4	0	0	0	4		
3	16MCM33X	Elective - 6	ME	4	0	0	0	4		
4	16MCM34X	Elective - 7	ME	4	0	0	0	4		
5	16MCM35	Internship/Industrial Training	ME	0	0	3	0	3		
6	16MCM36	Technical Seminar	ME	0	0	2	0	2		
		Total		16	0	6	0	22		

	Elective - 5							
16MCM321	Additive Manufacturing Technology	16MCM322/16MTE322	Applied Metrology and Quality Control					
Elective - 6								
16MCM331	Modelling and Simulation of Manufacturing Systems	16MCM332/16MTE332	Design for Manufacture and Assembly					
	Elective - 7							
16MCM341	Micro and Nano Manufacturing	16MCM342	Product Data Management					

R. V. College of Engineering, Bengaluru – 59. (An Autonomous Institution affiliated to VTU, Belagavi)

Department of Mechanical Engineering

		FOU	RTH SEN	AESTER				
					CREDIT	ALLOCAT	ION	Total
Sl.	Course Code	Course Title	BoS	Lecture	Tutorial	Practical	Self-Study	Credits
No				L	Т	Р	S	
1	16MCM41	Major Project	ME	0	0	26	0	26
2	16MCM42	Seminar	ME	0	0	2	0	2
		Total		0	0	28	0	28

FIRST SEMESTER

PROJECT MANAGEMENT						
Course Code	:	16 MEM11P		CIE Marks	:	100
Hrs/Week	••	L: T: P: S	3:2:0:0	SEE Marks		100
Credits	:	4		SEE Duration	:	3 Hours
 Course Learning Objectives: Students are able to 1. Understand the principles and components of project management. 2. Appreciate the integrated approach to managing projects. 3. Elaborate the processes of managing project cost and project procurements. 4. Apply the project management tools and techniques. 						
	<u> </u>	Uni	t-I	. 6. 11		7 Hours
Introduction: management, p project manage the project man	Introduction: Project, Project management, relationships among portfolio management, program management, project management, and organizational project management, relationship between project management, operations management and organizational strategy, business value, role of the project manager, project management body of knowledge.					
<u> </u>	1.6		$t - \Pi$	•••	.1	8 Hours
Generation and Screening of Project Ideas: Generation of ideas, monitoring the environment, corporate appraisal, scouting for project ideas, preliminary screening, project rating index, sources of positive net present value. Project costing, Project Scope Management: Project scope management, collect requirements define scope, create WBS, validate scope, control scope. Organizational influences & Project life cycle: Organizational influences on project management, project state holders & governance, project team, project life cycle. Unit – III 7 Hours Project Integration Management: Develop project charter, develop project management plan, direct & manage project work, monitor & control project work, perform integrated charge control,						
Project Qualit quality.	y i	management: Plan qua	ality management,	perform quality	assı	arance, control
		Unit	– IV			7 Hours
Project Risk Management: Plan risk management, identify risks, perform qualitative risk analysis, perform quantitative risk analysis, plan risk resources, control risk. Project Scheduling: Project implementation scheduling, Effective time management, Different scheduling techniques, Resources allocation method, PLM concepts. Project life cycle costing. Unit-V 7 Hours						
Tools & Techniques of Project Management : Bar (GANTT) chart, bar chart for combined activities, logic diagrams and networks, Project evaluation and review Techniques (PERT) Planning, Computerized project management.						
Syllabus includ Case d Numerid Comput	les isc cal j eriz	tutorials for two hour p ussions on project m problems on PERT & CH red project management	p er week: anagement PM exercises using M S	Project Software		

Course Outcomes:

After going through this course the student will be able to

CO1: Explain the process of project management and its application in delivering successful projects.

CO2: Illustrate project management process groups for various project / functional applications.

CO3: Appraise various knowledge areas in the project management framework.

CO4: Develop project plans and apply techniques to monitor, review and evaluate progress for different types of projects.

Reference Books:

- 1. Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK Guide)", 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Harold Kerzner, "Project Management A System approach to Planning Scheduling & Controlling", John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
- 3. Prasanna Chandra, "Project Planning Analysis Selection Financing Implementation & Review", Tata McGraw Hill Publication, 7th Edition, 2010, ISBN 0-07-007793-2.
- 4. Rory Burke, "Project Management Planning and Controlling Techniques", John Wiley & Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η	М	Μ		Μ	Н	Η	Н		Н	
CO2		Μ			Μ	Н	Η	Н	L	Н	
CO3		М	Н		М	Н	Η	Н	Н	Н	М
CO4	Μ	Н	Μ	L	Н	Н	Н	Н		Н	Н

	PSO1	PSO2
CO1		L
CO2	L	
CO3	L	L
CO4		М

		PROBABILITY AND	STATISTICS F	OR ENGINEERS		
Course Code	:	16MAT12B		CIE Marks	••	100
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	••	100
Credits	:	4		SEE Duration	••	3 Hrs
Course Learni	ng	Objectives (CLO):				
The students sha	all	be able to:				
1. Understand	the	fundamental concepts o	f Probability theo	ry and statistics.		
2. Identify pro	bal	oility distributions encou	untered in real li	te situations and us	e th	e concepts of
random vari	abl	es to solve simple proble	ems.	is set of data and rol	otio	nchin hatwaan
5. Apply apple	pr:	Tale statistical tools for a	narysing a specifi	ic set of data and fer	allo	iisiiip between
A Conduct hy	s. mt	hesis tests and build con	fidence intervals	to reach conclusions	ah	out population
mean and st	anc	lard deviation based on s	ingle set of data.	to reach conclusions	<i>a</i> 0	out population
		Ur	nit – I			10 Hrs
Data Summar	va	nd Presentation: Tabu	lar and Graphic	al display: Stem an	d I	eaf diagrams
Histograms, Bo	, с х р	lots. Radar diagrams.	and the Orupine	ur unsprug. Storif un	u L	our diagrams,
Fundamentals	of	Probability Theory: Sa	ample spaces and	Events, Interpretation	ons	of probability,
Addition rule, 0	Cor	nditional probability, Mu	iltiplication and '	Total probability rul	es, 1	Independence,
Bayes' theorem			-			-
		Un	it – II			10 Hrs
Random Varia	bl	es and Discrete probal		ons: Random Variah	oles	Discrete and
continuous ran	doi	n variables. Probability	v distributions a	nd mass functions.	Ex	spectations of
random variabl	es,	Discrete uniform distr	ibution, Binomir	nal distribution, Poi	ssoi	n distribution,
Applications.						
		Uni	it – III			09 Hrs
Continuous Pr	oba	ability Distributions: Co	ontinuous Uniform	n distribution, Norm	al d	istribution,
Normal approxi	ma	tions, Exponential, Erlar	ng, Gamma, Weib	oull distributions, Ap	plic	ations.
		Uni	it – IV			10 Hrs
Joint Probabil	ity	and Estimation theorem	ry: Marginal pro	obability distribution	1s, İ	Independence,
Covariance and	СС	prrelation, Numerical Pro	oblems. Sampling	g distribution, Centra	ıl Li	imit Theorem,
Sampling distri	out	ion of means.	•4 \$7			00 11
			$\frac{\mathbf{u}\mathbf{t} - \mathbf{v}}{\mathbf{u}\mathbf{t} - \mathbf{v}}$		1	09 Hrs
Statistical Infe	rer	ice for a single sample:	Hypothesis testi	ng, Confidence inter	vals	, inference on
nonulation Test	op tind	tor Goodness of fit	and unknown),	interence on the var	lanc	e of a normal
Course Outcor	nes	•				
After going three	1103 1110	• h this course the student	will be able to			
CO1: Understan	d 1	he fundamental concept	ts of probability	theory, statistics and	1 cc	ommonly used
probabili	ty o	listributions.				
CO2: Identify j	oir	t distributions and calcu	ulate the different	t moments in addition	on t	o establishing
goodness	of	fit.				5
CO3: Apply ra	nd	om phenomena, joint dis	stribution and san	npling theory to solv	e th	e problems in
field of n	nec	hanical Engineering.				
CO4: Analyze t	he	physical problem to esta	ablish mathemation	cal model and use ap	pro	priate method

	to solve.
Ref	erence Books:
1.	Douglas C Montgomery, George C Runger, "Applied statistics and Probability for
	Engineers", Wiley, Asia Student Edition, 4 th Edition, 2007, ISBN: 978-81-265-2315-3.
2.	Richard I Levin, David S Rubin, "Statistics for Management", Prentice Hall India, 7 th Edition,
	1997, ISBN: 9780134762920.
3.	Walpole, Myers, Myers, Ye, "Probability and Statistics for Engineers and Scientists", Pearson
	Education Inc., 8 th Edition, 2007, ISBN: 978-81-317-1552-9.
4.	Purna Chandra Biswal, "Probability and Statistics", PHI Learning Private Limited, Eastern
	Economy Edition, 2007, ISBN: 978-81-203-3140-2.

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	Н	Ι	L	-	-	-	-	-	-	-
CO2	-	Н	L	М	-	-	-	-	-	-	-
CO3	Μ	-	L	М	-	-	-	-	-	-	-
CO4	-	L	-	L	-	-	-	L	-	-	-

	PSO1	PSO2
CO1	L	L
CO2	L	L
CO3	М	М
CO4	Н	

Course Code : 16MCM13 CIE Marks : 100 +50 Hrs/Week : L:T:P:S 4:0:2:0 SEE Marks : 100 +50 Credits : 05 SEE Duration : 3 + 3 Hrs								
Course code : Ion (Chr) Chr Marks : 100 + 50 Hrs/Week : L:T:P:S 4:0:2:0 SEE Marks : 100 + 50 Credits : 05 SEE Duration : 3 + 3 Hrs								
Instruction Image: Credits Image: Cre								
Course Learning Objectives (CLO):								
Graduates shall be able to								
1. Explain the Role of CIM in Product cycle.								
2. Classify different types of drives and feedback devices of CNC machine.								
3. Differentiate between NC. CNC and DNC.								
4. Write CNC program for turning and machining centers.								
Unit – I 08 Hrs								
Introduction to Computer Integrated Manufacturing Systems: Manufacturing Systems, Types								
of Manufacturing Systems, Computer monitoring and control, Manufacturing support systems,								
The Product Cycle and CAD/ CAM, Functions of computers in CIMS: CIMS Data Files, Benefits								
of Computer integrated Manufacturing Systems.								
Unit – II 10 Hrs								
NC/CNC machine tools: Introduction, Classification, Merits and demerits, Application.								
Difference between NC and CNC over conventional machine tools. Role of NC/CNC technology								
in modern manufacturing. Axes designation, coordinate system, turning centers, machining								
centers, reference points and CNC control systems.								
CNC machine tools – structure and elements: Machine tool structure, transmission systems,								
guide ways, recirculating ball screws. CNC driving system components: hydraulic, servo Motors,								
stepper Motors. Feedback devices and encoders. Work holding devices and tool holding devices.								
Automatic tool changers: principles of operation.								
Unit – III IV Hrs								
INC and CINC control systems: INC elements, control systems, modes, advantages and limitations.								
Coordinate system in CNC machine tools. Machining Conters, Tooling for CNC machines.								
Interpolator for a CNC System: DDA integrator, hardware and software interpolator								
CNC nert programming: Steps involved in preparation of part programming, coding systems								
basic categories of NC codes, preparatory and miscellaneous codes, programming functions								
Unit – IV 10 Hrs								
Turning center part programming: manual part programming for turning center single and								
multi-pass canned cycles, and exercise problems on turning centers.								
Machining center part programming: Manual part programming for machining center, Cutter								
compensations: cutter radius compensation, tool length compensation and tool wear compensation.								
Drilling canned cycles, sub-programming, macros and simple exercise problems on machining								
centers								
Unit – V 10 Hrs								
DNC and data communication: Configuration of DNC system, functions of DNC,								
communication between DNC computer & MCU, DNC software features, networking of CNC								
machine tools, advantages of DNC.								
Adaptive control systems: Elements of Adaptive control systems, Adaptive control optimization								
anotane adaptive control constraint anotane or light in the second in the second of the								

Unit – VI (Lab Component)	24 Hrs
Manual CNC Part Programming for Turning and Machining Centers	
- Manual CNC Part Programming Using Standard G and M Codes	
- Tool Path Simulation	
– Exposure to Various Standard Control Systems	
- Machining simple components by Using CNC machines	
Part programming for CNC Machines using CAM Packages, simulation of turning/drilling/	/milling
operations.	
Course Outcomes:	
After going through this course the student will be able to:	
CO1: Explain fundamental concepts of NC and CNC systems.	
CO2: Apply design considerations for increasing productivity with CNC systems	
CO3: Analyze latest developments in CNC and DNC systems	
CO4: Develop manual part programs for complex profiles and test the programs	through
simulation.	C
Reference Books	
1. Y. Koren, "Computer Controls of Manufacturing Systems", Tata McGraw-Hill Edition	on 2005
ISBN 0-07-060743-5	
2. P.N. Rao, "CAD/CAM Principles and Applications", Tata McGraw-Hill 2 nd Edition	n, 2006.
ISBN 10: 0070681937 / ISBN 13: 9780070681934.	-
3. P Radhakrishnan, "Computer Numerical Control Machines and Computer	Aided

Manufacture", 1st Edition, 2012. ISBN: 9788122433975, 8122433979
Groover M P, "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall India (P) Ltd, 3rd Edition. ISBN 10: 0133499618 ISBN 13: 9788120334182

Flenuce Hall India (F) Edu, 5 Edution. ISBN 10.0155499018 ISBN 15. 9788

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н				Μ						
CO2	Μ	Н	Μ		L						
CO3	L	L	Н	L	М			L			
CO4			М	L	Н			М			

	PSO1	PSO2
CO1	Н	М
CO2	М	
CO3	М	М
CO4		L

		COMPUT	TER AIDED DE	SIGN			
Course Code	:	16MCM14		CIE Marks	:	100	
Hrs/Week	:	L:T:P:S	4:0:0:4	SEE Marks	:	100	
Credits	:	04		SEE Duration	:	3 Hrs	
Course Learni	ng	Objectives (CLO):					
Graduates shall	be	able to					
1. Memorize the	e eo	quations of transformatio	ns, curves, solid	models and surfaces			
2. Understand t	he o	concept of computer Gra	phics				
3. Demonstrate	the	principles of wire frame	e, Geometric, and	l surface modeling			
4. Distinguish the different concepts of algorithm							
		Ur	nit — I			08 Hrs	
Computer Gra	ıph	ics: Line drawing algorit	hms: DDA, Bre	senham's algorithm	is, M	lid-point circle	
algorithms, co	ord	inate systems, windowi	ing, View gene	ration, Clipping, T	rans	formations of	
geometry.							
		Un	$\frac{\mathrm{it} - \mathrm{II}}{\mathrm{I}}$			12 Hrs	
Software Conf	ïgu	ration: Software config	guration of a gra	phics system, Funct	ions	of a graphics	
package, Math	ema	atics of projections, Hic	Iden line remov	al, Hidden surface	remo	oval, Shading,	
Rendering.			c C	. • • • • •			
Basics of geo	Basics of geometry modeling: Requirements of geometric modeling, geometric models,						
geometric cons	truc	tion methods, modering		•		10 II	
	Unit – III 12 Hrs						
wireframe M	.0 a	entry: Classification of	wire frame en	itities, curve repres	enta	tion methods,	
Parametric rep		ntation of synthetic curve	urves, curvature	lations	nge	interpolation,	
	CSC	Itation of synthetic curve	$t = \mathbf{IV}$	lations.		8 Hrs	
Solid Modelin	α•	Application of solid mo	dels modeling o	considerations of sol	ide	geometry and	
topology solid	5 • 4 m	odeling scheme Round	lary Representat	ion Winged edge	data	structure for	
Boundary repr	ese	ntation Euler operation	ons Constructiv	e solid geometry	Sw	eeping Solid	
Manipulations.	050	intation, Euler operatio		e sonia geometry,	5.0	coping, sond	
I I D D D		Un	it – V			08 Hrs	
Surface model	ling	: Introduction. Planes.	Vector Planes, s	urface entities. Surf	face	representation	
methods, Quad	Irati	ic Surface in normal for	orms, Quadratic	Surface in general	for	ms, Quadratic	
Surface in ma	trix	form, parametric surf	aces, Parametric	representation of	ana	lytic surfaces,	
Parametric repr	ese	ntation of synthetic surfa	ces, Surface Mai	nipulations.		•	
		•	Self Study				
The student wi	11 ł	nave to choose a topic of	of his/her intere	st within the scope	of t	he course and	
pursue a study	in t	hat domain. This will be	e for 20 marks w	hich will be evaluat	ed ir	n TWO phases	
by a committee	co	nsisting of two faculty m	embers including	g the course faculty.	The	student has to	
demonstrate his	s/he	er capability of understand	nding, analyzing	and applying the k	now	ledge to solve	
problems. The	stu	dy could be a theoretical	l one involving s	simulation and analy	sis (or could be an	
experimental or	ne c	or even involve building a	a prototype syste	m.			
Course Outcor	nes		***				
After going thro	oug	h this course the student	will be able to:				
COI: Demons	stra	te the concepts of Compu	iter Graphics in (CAD			

- CO2: Apply the concepts of CAD in manufacturing industry
- CO3: Analyze different types of modeling in CAD
- CO4: Formulate representation of different types CAD models.

Reference Books

- 1. Chennakesava R Alavala "CAD/CAM Concepts and Applications", 1st Ed PHI, New Delhi, 2009 ISBN 978-81-203-3340-6
- 2. P.N. Rao, "CAD/CAM Principles and Applications", 3rd Ed., McGraw Hill, Education Pvt Ltd., New Delhi ISBN 0-07-058373-0
- 3. Ibrahim Zeid, "Mastering CAD/CAM", 2nd Ed., TMH Publishing Company Limited., New Delhi, ISBN 0-07-0634334-3
- 4. M.P. Groover and 3 E W Zimmers, CAD/CAM Computer aided Design and Manufacturing, 9th Ed, 1993, ISBN 81-203-0402-0

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	L	Н	-	-	-	-	-	-	-	-
CO2	Н	М	М	L	-	-	-	-	-	-	-
CO3	L	Н	-	Н	Μ	-	-	-	-	-	-
CO4	-	-	L	Μ	Н	L	-	-	-	-	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	Н	-
CO2	М	L
CO3	L	М
CO4	-	Н

		DIGITAL	MANUFACTU	RING			
		(Elec	ctive Group – 1)		1		
Course Code	:	16MCM151		CIE Marks	:	100	
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100	
Credits	:	04		SEE Duration	:	3 Hrs	
Course Learnin	ng	Objectives (CLO):					
Graduates shall	be	able to					
1. Define the basics of Digital Manufacturing							
2. Discuss the	2. Discuss the principles of Digital Manufacturing						
3. Explain the		ncept of system and info	rmatics of Digital	Manufacturing			
4. Demonstrate	e th	e DM in implementing	the Production Pr	rocess		10.11	
			$\frac{\operatorname{nt}-1}{\cdot \cdot $		- 1	10 Hrs	
Introduction:	De	velopment of Manufact	uring Science, C	concepts, Research	and	Development	
Status of Digita	ll ľ	Manufacturing, Connotat	ion and Research	Methods, Architec	ture	, Organization	
Model and Function Model of Digital Manufacturing System; System of Digital Manufacturing:							
Operation Mode		nd Architecture, Modelin	ig Theory and Me	thod,		10 11	
Card and a f Diai	- 1		$\frac{111 - 11}{2}$	-1 M		10 Hrs	
System of Digital Manufacturing: Theory System of Digital Manufacturing.							
Computing Ma	anı f	inacturing: Virtual Prot	otyping, Reverse	Engineering, Appli		on of Reverse	
Engineering, In	101	rmation Model of Prod	uct Life Cycle.	Information Model		Manufacturing	
Computing Co	so m	urces, Geometric Mode	ening Forms, Ge	ometric Modeling	in 1	Manufacturing	
Computing, Co	пр	utational Geometry.	:4 TTT			10 Ung	
Monufacturing		UII Information: Informat	ion Characterist	ion Activition on	4 1	Monufacturing	
Informatics Int	5 0 m	ration Sharing and Secu	urity of Manufact	uring Information I	u I ntor	vianuracturing	
Principle and M	egi	hanism of Sharing Manu	facturing Resource	uning information. I	meg		
Intelligent Ma	nut	facturing System. The	Application of S	ensor in the Process	ino	Data Mining	
Sensor applicati	on	s in tool condition monit	oring Intelligent	multi information fu	sior	Data Mining,	
Applied to Dis	vita	al Manufacturing Know	vledge Reasoning	σ in Engineering Γ)esi	on. Intelligent	
Knowledge-Bas	ed	Manufacturing System.	ieage iteasoning		0012	Sii, interingent	
8		Un	it – IV			10 Hrs	
Self-Learning	of	Manufacturing System	. Adaptation of	Manufacturing Syste	em.	The Concepts	
and Features of	Int	elligent Manufacturing,	Multi-Agent Man	ufacturing System.	,	· · · · · · · · · · · · · · · · · · ·	
Management of	of '	Technology: Concept	and Developmen	t Process of MOT,	Mo	odel of MOT.	
Coordinative M	Iar	agement of Collaborat	ive R&D Netwo	ork, Technical Capa	acity	of Strategic	
Management, H	lun	nan Factors, Human–Ma	chine Coordinate	d Factors. People-Pe	eopl	e Coordinated	
Factors, The Di	gita	al Marketing Based on C	ultural Difference	es and Ways of Thin	king		
	-	Un	nit — V			08 Hrs	
Key Technolog	gy (of Digital Manufacturi	ng: Various Digit	al Technologies in l	Proc	luct Lifecycle,	
CAX Technolo	gy	Integration, Digital Eq	uipment Technol	logy, Digital Proces	sing	g Technology,	
Remote Failure	Di	agnosis Based on Netwo	rk, Digital Logist	ic Technology.			
Course Outcon	nes	3:					
After going thro	oug	h this course the student	will be able to:				
CO1: Explain the working process and technology development in Digital Manufacturing							

- CO2: Apply the principles of DM in manufacturing industry
- CO3: Analyze the concepts of DM in Production
- CO4: Evaluate the techniques involved in DM

Reference Books

- 1. Zude Zhou, Shane (Shengquan) Xie, Dejun Chen "Fundamentals of Digital Manufacturing Science" 2012.Springer ISBN 978-0-85729-564-4,
- 2. Lihni Wang, Andrew Y.C. Nee "Collabarative design and planning for digital manufacturing" Springer Series, 2009, ISBN 998-1-84882-286-3
- 3. Asterios Agkathidis "Digital Manufacturing in Design and Architecture" Gardener Books, 2010, ISBN 978906392322
- 4. Ian Gibson, David Rosen, Brent Stucker, "Additive Manufacturing Technologies"- Springer, 2nd Edition. ISBN 978-1-4939-2112-6

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	L	-	-	-	-	-	-	-	-	I
CO2	M	М	L	М	-	-	-	-	-	-	-
CO3	L	Н	Μ	Н	М	-	-	-	-	-	-
CO4	-	L	L	Μ	Н	-	-	-	-	-	-

	PSO1	PSO2
CO1	Н	-
CO2	L	L
CO3	-	М
CO4	-	Н

HYDRAULIC AND PNEUMATIC SYSTEMS						
~ ~ ~		(Ele	ctive Group – 1)		1.0.0
Course Code	:	16MCM152	1000	CIE Marks	:	100
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100
Credits	:	04		SEE Duration	:	3 Hrs
Course Learni	ng	Objectives (CLO):				
Graduates shall	be	able to			- 4 -	
1. Understand	une	symbols used to represe		pneumatic componen	nts.	
2. Identify the	CO1	ntrol system elements of	fluid power in in	idustrial automation.		
3. Apply the ba	ası	c pneumatic systems to b	ouild electro pneu	imatic controls.		
4. Evaluate the	ap	propriate components th	rough design cal	culations.		10.77
		U	nit - I			10 Hrs
Introduction to	o h	ydraulic system: struct	ure of hydraulic	control system, pres	sure	e compensated
pump, cavitatio	n a	and aeration, pump spec	ifications, motor	specifications, appli	cati	ons, cylinders,
Mechanics of F	1y(nd	flow control volve work	g, Classification	of control valves, n	10UI	ting, pressure
Introduction t	na o r	noumatic system: Stru	cture of Pneum	atic control System		components.
sizing preumat	ic i	components air preparat	ion and distribut	ion symbolic represe	ntat	ions
sizing, pileumat		Un	nit – II	ion, symbolic represe	mai	08 Hrs
Design of Hyd	Ira	ulic control System: S	Selection of hyd	raulic cylinder selec	rtior	of hydraulic
motors. flow co	nti	rol valves, directional co	ntrol valves, filt	ers. conduits. pressur	e lo	sses in valves.
selection of pun	np,	reservoir design, sizing	of accumulators,	numerical problems		
1	1 /	Un	it – III	1		10 Hrs
Industrial Hy	dra	aulic Systems: Regene	erative circuit	for drilling machin	e, l	Double Pump
Hydraulic Syste	em	, Hydraulic Cylinder Se	equencing Circu	its, Speed control c	ircui	its, Automatic
cylinder recipro	oca	ting system, Cylinder	synchronizing c	ircuit using differen	t m	ethods, safety
circuit, accumu	late	or circuits, hydraulic ope	eration of planni	ng machine, surface	grin	ding machine,
automatic lathe,	pr	ess, circuit for robot arm	l.			I
		Un	it – IV			10 Hrs
Industrial Pne	un	natic Systems: Direct an	nd indirect contr	ol of double acting o	ylir	iders, memory
control, logics i	n c	circuit design, application	ns of shuttle valv	e, twin pressure valv	e, sp	beed control of
double acting c	yli	nder, quick exhaust valv	e circuit, cyclic	operation of cylinder	, au	tomatic return
motion, applica	t101	ns of pressure sequence	valve circuit and	time delay valve circ	uit,	signal conflict
by cascading m	ieti	nod, use of karnough-ve	eitch map in circ	cuits, pneumatically	cont	trolled drilling
machine.		Ur	nit V			10 Hrs
Flectro pneum	ati	UI	n – v	ntrollers advantages	Sc	lenoid valves
limit switches	re	lay controls symbolic i	representation at	nd working principle	la St	tching circuit
dominant on an	d a	dominant off circuit, con	tactors and swit	ches. Developing an	elec	tro pneumatic
control system, electro pneumatic multiple actuator circuits						
Course Outcomes:						
After going through this course the student will be able to:						
CO1: Describe	e th	ne constructional features	s of hydraulic and	d pneumatic compone	ents	
CO2: Apply h	vd	raulic and proumatic cor	trole in the desig	in of automated contr	പ	
CO2. Apply II	yu	aute and pheumatic con	uois in the desig		018.	

CO3: Evaluate design of hydraulic and pneumatic components for building circuits.

CO4: Design hydraulic and pneumatic systems for industrial applications.

Reference Books

- James L Johnson, "Introduction to fluid power", Cengage Learning, first edition 2003, ISBN-981-243-661-8
- 2. R Srinivasan, "Hydraulic and pneumatic controls", , Tata McGraw hill, second edition,2010 ISBN 978-81-8209-138-2
- 3. Joji P, "Pneumatic Controls", Wiley First edition 2009, ISBN 978-81-265-1542-4
- 4. SR majumdar, "Pneumatic systems", Tata Mcgrawhill, Second edition 2012, ISBN 978-0-07-460231-7

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н		Н		Μ						
CO2		L	Μ		L						
CO3	Μ	Н	М	L	L			L			
CO4		Μ		Μ	L			L			

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	L	L
CO2	М	L
CO3		Н
CO4	Н	

		PROFESSIONA	L SKILL DEV	ELOPMENT			
Course Code	:	16HSS16		CIE Marks	:	50	
Hrs/Week	:	L:T:P:S	0:0:4:0	Credits	:	02	
Course Learning Objectives: Students are able to 1. 1. Understand the importance of verbal and written communication 2. Improve qualitative and quantitative problem solving skills 3. Apply critical and logical think process to specific problems 4. Manage stress by applying stress management skills UNIT 1							
Attitudinal Dev Resume Writing for better preser	n elo g: U ntat	Skills: Basics of Con pment, Self Confidence, Jnderstanding the basic ion of facts.	SWOC analysis	ersonal Skills & s. resume, Resume wr	iting t	ips Guidelines	
		UN	IT 2			6 Hours	
decimals, digit organizing info Analogies – int corrections, and Solving	Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction decimals, digit places etc. Reasoning and Logical Aptitude, - Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions. Verbal Analogies – introduction to different question types – analogies, sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc. Reading Comprehension, Problem						
0		UN	IT 3			4 Hours	
Interview Skill	s: (Questions asked & how	to handle them,	Body language in	interv	iew, Etiquette,	
Dress code in ir	ter	view, Behavioral and tec	chnical interview	ws, Mock interview	s - M	ock interviews	
with different P	ane	els. Practice on Stress In	terviews, Techn	ical Interviews, Ger	neral H	IR interviews	
			<u>IT 4</u>	1. 1. 1		5 Hours	
Interpersonal sensitivity; capa Group discussion	an bil on a	d Managerial Skills: ity and maturity model, and presentation skills;	Optimal co-e decision making	existence, cultural g ability and analysi	sensi s for b	tivity, gender prain storming;	
		UN	IT 5			4 Hours	
Motivation and Stress Management: Self motivation, group motivation, leadership abilities Stress clauses and stress busters to handle stress and de-stress; professional ethics, values to be practiced, standards and codes to be adopted as professional engineers in the society for various projects.							
Note: The resp	ect	ive departments should	discuss case st	udies and standard	s pert	aining to their	
domain							
After going thro CO1: Develop CO2: Analyze CO3: Develop CO4: Demonstr	Course Outcome:After going through this course the students will be able toCO1: Develop professional skill to suit the industry requirementCO2: Analyze problems using quantitative and reasoning skillsCO3: Develop leadership and interpersonal working skillsCO4: Demonstrate verbal communication skills with appropriate body language.						

References

- 1. Stephen R Covey, "The 7 Habits of Highly Effective People", Free Press, 2004 Edition, ISBN: 0743272455
- 2. Dale Carnegie, "How to win friends and influence people", General Press, 1st Edition, 2016, ISBN: 9789380914787
- 3. Kerry Patterson, Joseph Grenny, Ron Mcmillan, "Crucial Conversation: Tools for Talking When Stakes are High", McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204
- 4. Ethnus, "Aptimithra: Best Aptitude Book", Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in TWO Phases.

Phase	Activity	Weightage
Ι	After 7 weeks - Unit 1, 2 & Part of Unit 3	50%
II	After 12 weeks – Unit 3, 4, 5	50%

CIE Evaluation shall be done with weightage as follows:

Writing skills	10%
Logical Thinking	25%
Verbal Communication & Body Language	35%
Leadership and Interpersonal Skills	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η		L			Н		Н	Н	Н	М
CO2	Н	Μ	Н						Μ	Н	М
CO3			L			Η		Н	Н	Н	Η
CO4			Н			Η	L	Н	Н	Н	Н

	PSO1	PSO2
CO1		
CO2		L
CO3		
CO4	L	

SECOND SEMESTER RESEARCH METHODOLOGY

Course Code	••	16MEM21R		CIE Marks	:	100
Hrs/Week	:	L: T: P: S	3:2:0:0	SEE Marks	:	100
Credits	:	04		SEE Duration	:	3 Hours
Course Learni	ng	Objectives:			I	
Students are abl	le to	9 0				
1. Understand of	of tl	ne underlying principles	of quantitative a	nd qualitative researcl	a	
2. Perform the	gap	analysis and identify the	e overall process	of designing a resear	ch si	tudy.
3. Choose the n	nos	t appropriate research me	ethodology to ad	dress a particular rese	arch	n problem
4. Explain a rai	nge	of quantitative and qual	litative approach	es to analyze data an	d si	uggest possible
solutions.						
		Uni	t – I			7 Hours
Overview of R	ese	arch				
Meaning of Res	sear	ch, Types of Research, R	Research and Sci	entific Method, Defin	ing	the Research
Problem, Resea	rch	Design, Different Resea	rch Designs.			
		Unit	$z - \mathbf{I}\mathbf{I}$			7 Hours
Methods of Da	ta (Collection				
Collection of P	rin	ary Data, Observation N	Method, Intervie	w Method, Collectio	n ot	f Data through
Questionnaires,	Co	ollection of Data through	Schedules, Col	lection of Secondary	Dat	a, Selection of
Appropriate Me	etho	od for Data Collection.	***			0.44
	1	Unit	- 111			8 Hours
Sampling processors stratified sample numeric.	ess ing al p	, Non-probability samp , cluster sampling system problems.	ling, probability matic random sa	y sampling: simple ampling, Determination	ranc on (lom sampling, of sample size,
	-	Unit	– IV			7 Hours
Processing and	l ar	alysis of Data				I
Processing Ope Dispersion, Asy single sampling problems.	ym ;: P	ions, Types of Analysis, metry and Relationship, arametric (t, z and F) Ch	Statistics in Reactive correlation and in Square, ANOV	search, Measures of: regression, Testing /A, and non-paramet	Cen of I ric t	tral Tendency, Hypotheses for ests, numerical
		Uni	it-V			7 Hours
Essential of Report writing and Ethical issues : Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Precautions for Writing Research Reports.						
Syllabus includ	les	12 hours of tutorials in	which:			
• Faculty	is e	expected to discuss resear	ch methodology	for specializations u	nder	consideration.
 Numerical problems on statistical analysis as required for the domains in which students are studying must be discussed. 						
• Statistic	al a	nalysis using MINITAB	/ MatLab and su	ch other softwares can	1 be	introduced.

Course Outcomes:

After going through this course the students will be able to

- CO 1. Explain various principles and concepts of research methodology.
- CO 2. Apply appropriate method of data collection and analyze using statistical methods.
- CO 3. Analyze research outputs in a structured manner and prepare report as per the technical and ethical standards.
- CO 4. Formulate research methodology for a given engineering and management problem situation.

Reference Books:

- 1. Kothari C.R., "Research Methodology Methods and techniques", New Age International, 2004, ISBN: 9788122415223
- 2. Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., "Management Research Methodology", Pearson Education India, 2009 Edition, ISBN:9788177585636
- **3.** Levin, R.I. and Rubin, D.S., "Statistics for Management", 7th Edition, Pearson Education: New Delhi, ISBN-13: 978-8177585841

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ			М				Н		Н	
CO2		L	Н	Н	М	Μ	L	L		М	L
CO3	L	М	Μ	М	Н	Μ	L	М			М
CO4	Н	Н	Н	Н		L	L	М	Н		Н

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1		
CO2	L	
CO3	М	М
CO4		L

MECHATRONICS SYSTEMS (Theory & Practice)							
Course Code	•	16MCM22		CIE Marks	•	100 + 50	
Hrs/Week	•	L:T:P:S	4:0:2:0	SEE Marks	•	100 + 50 100 + 50	
Credits	•	05	1.0.2.0	SEE Duration	•	3 + 3 Hrs.	
Course Learni	ng	Objectives (CLO):		SEL Durution	•	0 10 1115	
Graduates shall	be	able to					
1. Substantiate	e th	e need for interdisciplina	ry study in techno	ology education.			
2. Understand	the	e evolution and developm	ent of Mechatron	ics as a discipline.			
3. Compare va	nric	ous types of transducers u	used in industrial	automation, machin	e co	ontrol systems,	
instrumenta	tio	n and equipments.					
4. Understand	the	e applications of micropro	ocessors in variou	s systems and to know	ow t	he functions	
of each elen	ner	ıt.					
		Uı	nit — I			07 Hrs	
Introduction:	De	finition, Multidisciplina	ry Scenario, Ev	olution of Mechatr	onio	cs, Design of	
Mechatronics s	yste	em, Objectives, advantag	es and disadvanta	ges of Mechatronics			
Transducers a	nd	Sensors: Definition a	ind classification	of transducers, Di	ffer	rence between	
transducer and	. S	ensor, Definition and	classification of	sensors, Principle	of	working and	
applications of	lıgl	nt sensors, proximity swi	tches and Hall eff	ect sensors.		10 11	
N/:			$\frac{111 - 11}{1 + 1 + 1}$		- T	10 Hrs	
Microprocesso	rs	and Microcontrollers:	Introduction, Mil	croprocessor system	S, E	Sasic elements	
Microprocessor		s, Microcontrollers, Dill	CPU memory an	d address I/O and I	IVII Orit	crocontrollers,	
ΔI II Instructio	ar n e	and Program Δ scembler	Data Registers	Program Counter F	en Iao	s Fetch cycle	
write cycle stat	ла те 1	bus interrupts Intel's 808	5A Microprocess	sor	lag	s, i eten cycle,	
write eyere, stat	<i>.</i> , .	Uni	it – III			12 Hrs	
PLC: Introduct	ior	to PLC's, basic structur	re. Principle of or	peration. Programmi	ng a	and concept of	
ladder diagram.	C	oncept of latching & sele	ction of a PLC.				
Integration: In	teg	gration: Introduction & I	background, Adv	anced actuators, Pno	eum	atic actuators,	
Industrial Robo	ot,	different parts of a Ro	bot-Controller, D	rive, Arm, End Ef	fecto	ors, Sensor &	
Functional requ	ire	ments of robot.					
		Un	it – IV			12 Hrs	
Mechanical Ac	etu	ation: Mechanical system	ns, types of motio	on, Cams, Gear trains	s, Ra	atchet & Pawl,	
Belt and chain of	lriv	ves, Mechanical aspects of	of motor selection				
Electrical Act	ua	tion System: Electrical	l systems, Mech	nanical switches, S	oler	noids, Relays,	
DC/AC Motors	, P1	rinciple of Stepper Motor	rs & servomotors.			1	
		Un	uit – V			09 Hrs	
Pneumatic an	d	Hydraulic systems: A	ctuating systems.	, Pneumatic and h	ydra	aulic systems,	
Classifications	of	Valves, Pressure relief	valves, Pressure	regulating/reducing	; va	lves, Pressure	
sequence valve,	, C	ylinders and rotary actual	tors.	. 1. 1 1 0	. 1	• • • • •	
DCV& FCV:	Pri	nciple & construction de	etails, types of sl	iding spool valve, S	ole	noid operated,	
Symbols of hydroulic system	ura m	une elements, Compone	ents of nydraulic	system, functions o	I Va	arrious units of	
		Init VI (I	ah Component)			24 Um	
Introduction to	th	uni – VI (L hydraulic work baraba	as component)	ente Principale of 1	wd.	aulic systems	
introduction to	the	e nydraune work benche	s and lab equipm	ents. Principals of I	iyar	aulic systems,	

power and control circuits. Introduction to the pneumatic work benches and lab equipments, Matlab /SIMULINK Analysis - Analysis of Simple Hydraulic Circuits, Meter-In Circuit Analysis, Meter-out circuit, Bleed Off Circuit, Analysis of circuit - valves in series, Analysis of circuit valves in parallel.

Course Outcomes:

After going through this course the student will be able to:

- CO1: Illustrate types of transducers used in industrial automation and machine control systems.
- CO2: Select the architecture of microprocessors
- CO3: Analyse the working principles of mechanical, electrical, pneumatic and hydraulic actuators
- CO4: Design ladder logic based PLC circuit for controlling industrial activities

Reference Books

- 1. Nitaigour Premchand Mahalik, "Mechatronics-Principles, Concepts and Applications", Tata Mc Graw Hill –2003, ISBN:0070483744
- 2. Anthony Esposito, "Fluid Power", Pearson Education 6th Edition-2011, ISBN:0135136903
- 3. W.Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", Pearson Education-2005, ISBN: 0273742868
- 4. Mechatronics by "HMT Ltd. Tata Mc GrawHill -2000.ISBN: 007463643X

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н		L	Μ	L						
CO2	L	L	Μ		L						
CO3	Н	L			Μ						L
CO4		L	М		М	L					

	PSO1	PSO2
CO1	L	Н
CO2	М	
CO3	М	L
CO4	Н	L

	NON TRADITIONAL MACHINING AND TESTING								
	·	(Electiv	re Group – 2)	1		1			
Course Code	:	16MCM231/16MTE231		CIE Marks	:	100			
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100			
Credits	:	04		SEE Duration	:	3 Hrs.			
Course Learni	ng	Objectives (CLO):							
Graduates shall	be	able to							
1. Understand	the	e principle, mechanism of n	netal removal	of various non-trac	litio	nal machining			
processes.									
2. Identify the various process parameters and their effect on the component machined on various									
non-traditio	nal	machining processes.		0 1100					
3. Apply the	ap	plications of different pro	cesses param	neters for different	ΝΊ	M and NDT			
techniques.	1.		1 6 1.66	. 1					
4. Evaluate the	e di	fferent NTM and NDT meth	nods for differ	ent applications.		0.0 11			
		Unit -	- I	1		08 Hrs			
Introduction:	Ne	ed for unconventional mac	chining proce	sses, classification	of 1	non-traditional			
machining proc	ess	es.	T / N / 1 · ·			1. 0 /			
Abrasive Jet		chining (AJM): Abrasive	Jet Machinin	ig Setup – Gas pr	ropu	ilsion System,			
Abrasive feede	r, 1	Machining Chamber, AJM	Nozzle; Para	metric Analysis – S	stan	d-off-distance,			
Abrasive flow f	ate	, Nozzle pressure, Mixing ra	tio; Process C	apabilities.	c				
Ultrasonic ma	cn	ining (USM): Ultrasonic I	Machining Sy	ystem, Mechanics (or c	utting, Model			
proposed by S		v – Grain Throwing Mode	el, Grain Ham	imering Model; Pai	ame	etric Analysis,			
Process Capabi	iitie	28. TL:4	тт			10 11			
Unit – II 12 Hrs									
Water Jet Cutting (WJC): WJC Machine, Process Characteristics, Process Performance.									
Water Jet Cu	ıtti	ng (WJC): WJC Machin	e, Process C	Characteristics, Proc	ess	Performance.			
Water Jet Cu Applications, A	utti .dva	ing (WJC): WJC Machin antage and Limitations.	e, Process C	Characteristics, Proc	ess obir	Performance.			
Water Jet Cu Applications, A Abrasive Wat	utti .dva er	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Eagd System Abrasive Wate	e, Process C Working Pri	Characteristics, Proc inciple, AWJM Ma	chir	Performance.			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during	utti .dva er ve]	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting Water Flow Pate Al	e, Process C Working Pri er Jet Nozzle,	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasiva Parti	chir chir	Performance. ne – Pumping sis – Water Jet			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material Cutti	utti dva er ve] Sl	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters Traverse Spec	e, Process C Working Pri er Jet Nozzle, brasive Flow	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes Stand-Off	chir chir nalys cle	Performance. ne – Pumping sis – Water Jet Size, Abrasive tance Process			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities	utti dva er ve] ; Sl	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spee	e, Process C Working Pri er Jet Nozzle, brasive Flow f ed, Number o	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off-	chir chir nalys cle (Dis	Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities.	utti dv: er ve] ; Sl 1g	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spec (achining (AEM): Workir	e, Process C Working Pri er Jet Nozzle, brasive Flow 2 ed, Number o	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off-	chir chir nalys cle s -Dis	Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl	utti dv: er ve] ; S1 ig] / N	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spec Iachining (AFM): Workir	e, Process C Working Pri er Jet Nozzle, brasive Flow 1 ed, Number o ng Principle o	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow N	chir nalys cle 5 Dis /Iacł	Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr	utti .dv: er ve] ; S1 ng [v N es,	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spec Iachining (AFM): Workir	e, Process C Working Pri er Jet Nozzle, brasive Flow 2 ed, Number o ng Principle o forking Princi	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAE Mate	chir chir nalys cle 5 -Dis /Iach	Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr	utti dv: er ve] ; S1 ng N es, es, asi - T	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spee Machining (AFM): Workin ve Finishing (MAF) – W ype and Size of Grains	e, Process C Working Pri er Jet Nozzle, brasive Flow ed, Number o ng Principle o forking Princi	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate	chir nalys cle 5 Dis /Iach rial	Performance. he – Pumping sis – Water Jet Size, Abrasive tance, Process hining System Removal and			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish -	utti dv: er ve] Sl ng v N es, asi - T	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spec Machining (AFM): Workir ve Finishing (MAF) – W ype and Size of Grains.	e, Process C Working Pri- er Jet Nozzle, brasive Flow 2 ed, Number o ng Principle o forking Princi	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate	chir chir nalys cle 5 Dis Aach rial	Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish	utti .dv: er ve] ; S1 ng] es, es, asi - T	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spee Machining (AFM): Workir ve Finishing (MAF) – W ype and Size of Grains. Unit – achining (LBM): Productio	e, Process C Working Pri- er Jet Nozzle, brasive Flow F ed, Number o ng Principle o forking Princi	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate	chir nalys cle s Dis Mach rial	12 Hrs Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and 10 Hrs LASER Beam			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish LASER Beam Machining	ve s Sl s Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl Sl S	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spec Iachining (AFM): Workir ve Finishing (MAF) – W ype and Size of Grains. Unit – achining (LBM): Productio s of Lasers – Solid Sta	e, Process C Working Pri- er Jet Nozzle, brasive Flow f ed, Number o ng Principle o forking Princi <u>III</u> n of LASERS	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate	chir chir nalys cle b Dis Aach rial	12 Hrs Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and 10 Hrs LASER Beam			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish LASER Beam Machining, Ty Applications A	utti .dv: er ve] . Sl ng v N es, asi - T Ma	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spec Machining (AFM): Workin ve Finishing (MAF) – W ype and Size of Grains. Unit – achining (LBM): Productio s of Lasers – Solid Sta antage and Limitations	e, Process C Working Pri- er Jet Nozzle, brasive Flow F ed, Number of ng Principle of forking Princi III n of LASERS te Lasers, C	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate S, Working Principle Gas Lasers; Proces	chir nalys cle 3 Dis Dis Aach rial	Performance. he – Pumping sis – Water Jet Size, Abrasive tance, Process hining System Removal and 10 Hrs LASER Beam Characteristics.			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish LASER Beam Machining, Ty Applications, A Plasma Arc N	utti dv: er ve Sl ng v N es, asi - T Ma vpe: dv: lac	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spee Machining (AFM): Workin ve Finishing (MAF) – W ype and Size of Grains. <u>Unit –</u> achining (LBM): Productio s of Lasers – Solid Sta antage and Limitations. hining (PAM): Working P	e, Process C Working Pri- er Jet Nozzle, brasive Flow ed, Number o ng Principle o forking Princi III n of LASERS te Lasers, C	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate 5, Working Principle Gas Lasers; Proces	chir nalys cle 5 Dis Acch rial cof s C	12 Hrs Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and 10 Hrs LASER Beam Characteristics. n Elements of			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish LASER Beam Machining, Ty Applications, A Plasma Arc M	utti dv: er ve Sl sg si es, asi -T Ma /pe: dv: lac	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spec Iachining (AFM): Workir ve Finishing (MAF) – W ype and Size of Grains. Unit – achining (LBM): Productio s of Lasers – Solid Sta antage and Limitations. hining (PAM): Working P g System Process Performan	e, Process C Working Pri- er Jet Nozzle, brasive Flow 1 ed, Number o ng Principle o forking Princi <u>III</u> on of LASERS te Lasers, C principle, Plas	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate G, Working Principle Gas Lasers; Proces ma Arc Cutting Sys	cle chir nalys cle chir Dis Dis Mach rial	12 Hrs Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and 10 Hrs LASER Beam Characteristics. n, Elements of			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish ULASER Beam Machining, Ty Applications, A Plasma Arc M Plasma Arc Cut	utti dv: er ve Sl ng v N es, asi - T Ma vpe dv: lac tin	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spec Machining (AFM): Workir ve Finishing (MAF) – W ype and Size of Grains. <u>Unit –</u> achining (LBM): Productio s of Lasers – Solid Sta antage and Limitations. hining (PAM): Working P g System, Process Performan Machining (EBM): Workir	e, Process C Working Pri- er Jet Nozzle, brasive Flow F ed, Number o og Principle of forking Princi III on of LASERS the Lasers, C principle, Plas nce.	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate G, Working Principle Gas Lasers; Proces ma Arc Cutting Sys Electron Beam Ma	cle s chir nalys cle s Dis fach rial cof s C stem	12 Hrs Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and 10 Hrs LASER Beam Characteristics. n, Elements of uing System			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish - LASER Beam Machining, Ty Applications, A Plasma Arc M Plasma Arc Cut Electron Beam	utti dv: er ve Sl ng v N es, asi - T M: /pe: dv: lac tin 1 N	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spee Machining (AFM): Workir ve Finishing (MAF) – W ype and Size of Grains. <u>Unit –</u> achining (LBM): Productio s of Lasers – Solid Sta antage and Limitations. hining (PAM): Working P g System, Process Performan Machining (EBM): Working	e, Process C Working Pri- er Jet Nozzle, brasive Flow ed, Number o ng Principle o forking Princi III on of LASERS te Lasers, C Principle, Plas nce. ng Principle,	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate G, Working Principle Gas Lasers; Proces ma Arc Cutting Sys Electron Beam Ma and Machining G	chir nalys cle 5 Dis Dis Aach rial cof s C stem Char	I2 Hrs Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and 10 Hrs LASER Beam Characteristics. n, Elements of ning System – nber:			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish UASER Beam Machining, Ty Applications, A Plasma Arc M Plasma Arc Cut Electron Beam Electron Beam	utti dv: er ve Sl ng v N es, asi - T Ma /pe: dva lac tin 1 N 1 (arad	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spec Iachining (AFM): Workir ve Finishing (MAF) – W ype and Size of Grains. <u>Unit –</u> achining (LBM): Productio s of Lasers – Solid Sta antage and Limitations. hining (PAM): Working P g System, Process Performan Iachining (EBM): Workin Gun, Power Supply, Vacu	e, Process C Working Pri- er Jet Nozzle, brasive Flow 1 ed, Number o ng Principle o forking Princi III on of LASERS te Lasers, C Principle, Plas nce. ng Principle, uum System plications. Ad	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate b, Working Principle Gas Lasers; Proces ma Arc Cutting Sys Electron Beam Ma and Machining C vantage and Limitati	cle 3 cle 3 cle 3 cle 3 cle 3 cle 3 cle 3 cle 4 clis s C stem chin Char.	12 Hrs Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and 10 Hrs LASER Beam Characteristics. n, Elements of ning System – nber; Process			
Water Jet Cu Applications, A Abrasive Wat System, Abrasi Pressure during Material, Cuttin Capabilities. Abrasive Flow Process Variabl Magnetic Abr Surface Finish UASER Beam Machining, Ty Applications, A Plasma Arc M Plasma Arc Cut Electron Beam Parameters, Cha	utti dv: er ve Slng Ma es, asi - T Ma /pe: dv: lac tin 1 N 1 (araa	ing (WJC): WJC Machin antage and Limitations. Jet Machining (AWJM): Feed System, Abrasive Wate otting, Water Flow Rate, Al Parameters – Traverse Spee Machining (AFM): Workir ve Finishing (MAF) – W ype and Size of Grains. <u>Unit –</u> achining (LBM): Productio s of Lasers – Solid Sta antage and Limitations. hining (PAM): Working P g System, Process Performan Machining (EBM): Working Sun, Power Supply, Vacu cteristics of the Process. App Unit –	e, Process C Working Pri- er Jet Nozzle, brasive Flow ed, Number o ng Principle o forking Princi III on of LASERS te Lasers, C Principle, Plas nce. ng Principle, Plas nce. ng Principle, Ad V	Characteristics, Proc inciple, AWJM Ma Catcher; Process Ar Rate, Abrasive Parti f Passes, Stand-Off- of Abrasive flow M ple of MAF, Mate , Working Principle Gas Lasers; Proces ma Arc Cutting Sys Electron Beam Ma and Machining C vantage and Limitati	cle 3 cle 3 Dis Dis Aach rial cof s C stem chin Char ons.	12 Hrs Performance. ne – Pumping sis – Water Jet Size, Abrasive tance, Process nining System Removal and 10 Hrs LASER Beam Characteristics. n, Elements of ning System – nber; Process 08 Hrs			

Source, Electrolyte supply and Cleaning System, Tool and Tool Feed System, Workpiece and Work Holding Device; Theory of ECM – Faraday's Laws of Electrolysis, Electrochemical Equivalent of Alloys, Material Removal Rate in ECM.

Chemical Processes: Introduction, Maskants – Cut and Peel, Screen Printing, Photoresist Maskant; Electropolishing – Introduction, Process Description, Process parameters, Process limitations, Applications, Advantage and Limitations.

Unit – V

10 Hrs

Non Destructive Testing: Scope and advantages of NDT, comparison of NDT with DT, classifications of NDT, introduction, principle, equipment, procedures and characteristics of Visual Inspection, Eddy Current Testing, Liquid Penetrant Testing, Magnetic Particle Testing and Radiographic Testing.

Course Outcomes:

After going through this course the student will be able to:

- CO1: Illustrate the principles of non-conventional machining and testing
- CO2: Analyse the mechanism of material removal in non-conventional machining processes
- CO3: Evaluate the performance of non-conventional machining processes

CO4: Justify non-conventional machining and non-destructive testing techniques

Reference Books

- 1. Bennedict, G. F., "Non Tradtional Machining Techniques", Marcel Decker, New York, 1990 ISBN 9780824773526
- 2. Pandey and Sha, "Modern Manufacturing Process", Prentice Hall, New Delhi, 1997 ISBN: 978-81-7319-138-1
- 3. Garry F. Benedict, "Unconventional Machining Process", Marcel Dekker Publication, New York, 1987. ISBN: 0-8247-7352-7
- 4. I. J Prasad, C G K Nair, "Non-Destructive Testing and Evaluation of Materials", Tata McGraw Hill Education Private Limited

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	Μ	L	Н							
CO2	L	Н		Μ							
CO3	Н	L	М								
CO4	L	М		Н							

	PSO1	PSO2
CO1	Н	
CO2		L
CO3	L	М
CO4	М	

DESIGN OF MACHINE TOOLS								
		(Electiv	e Group – 2)			100		
Course Code	:	16MPD232/16MCM232	4.0.0.0	CIE Marks	:	100		
Hrs/ week	:	L:1:P:5	4:0:0:0	SEE Marks	:	100 2 Hag		
Creatis Course Learning	:	04 Objectives (CLO):		SEE Duration	:	3 Hrs.		
Graduates shall	ng ba	objectives (CLO):						
1 Understand	ue the	fundamentals of Machine T	Cool Design					
2. Demonstrate the principles of Machine Tool Design concepts								
3. Develop the	 Demonstrate the principles of Machine Tool Design concepts Develop the Design Intricacies 							
4. Solve the de	sis	an problems of Machine Too	1					
5. Apply the co	ond	cepts to design the Machine	Fool					
		Unit -	- I			06 Hrs		
INTRODUCTI	[0]	N: Working and Auxiliary	Motion, Para	meters Defining W	orki	ng Motion Of		
Machine Tool,	Ma	achining time problems, Ma	chine Tool D	rives, Hydraulic Tra	nsm	ission And Its		
Elements, Mech	an	ical Transmission And Its E	lements, Gene	eral Requirements, L	ayo	ut Of Machine		
Tool, Aim of Sp	bee	and Feed Rate Regulation		•	•			
		Unit –	II			12 Hrs		
REGULATIO	REGULATION OF SPPED AND FEED RATES: Stepped Regulation of Speed, Design of Feed							
Box, Machine	То	ol Drives Using Multiple S	peed Motors,	, Special Cases of	Gear	Box Design,		
Determining Th	le]	Number of Teeth of Gears,	Classification	of Speed and Feed	Bo	xes, Functions		
and Requirement	its							
		Unit –	III			12 Hrs		
DESIGN OF N	ΛA	CHINE TOOL STRUCT	URES: Desig	gn Criteria, Material	s, S	tatic Stiffness,		
Profile of Mach	ine	e Tool Structures, Basic Des	ign Procedure	e, Design of Beds, D	esig	n of Columns,		
Design of Hous	ing	g, Design of Bases and Table	es, Design of	Cross Rails, Arms,	Sade	dles, Carriages		
and Rams.								
DEGLODI OF O		Unit –	IV			10 Hrs		
DESIGN OF G	U	IDEWAYS AND POWER	SCREWS: F	unction and Types C	buid	eways, Design		
of Slideways,	De	sign Criteria and Calculati	ons slideway	vs, guideways opera	ting	g under liquid		
friction condition	ns	, Design of Power Screws.	• 7			00 11		
DESIGN OF	CT				•			
DESIGN OF	St 104	INDLES AND SPINDLE	L SUPPORI	S: Functions of S	pinc	lies Unit and		
requirements, N		erials of Spindles, Effect of	Machine 100	Di Compliance on Ma	acni	ning accuracy,		
Design Calculat	101	n of Spindles, And-Incuoir E	searings, Shu	ing bearings.				
After going three	nes	S: h this course the student will	l ha ahla tar					
CO1: Demons	ug tro	the the fundamental concepts	of Machine T	Cool Design				
CO2: Apply m	ua natl	hematical models in the desired	on of Machine	e Tools				
CO3: Apply II	sn	eed and feed rates in machin	e tools					
CO4: Design of	on Sol	properts of machine tools	0 10015					
Reference Boo	ks							
1. N K Mehta		Machine Tool Design and N	umerical Con	trol". Tata McGraw	Hill	. 3 rd Ed.		
ISBN: 978	-1-	25-900457-5			1 1 1	,,		
2. N. Acherka	n '	V Push, Nicholas Weinstein,	"Machine To	ool Design" Universi	ty P	ress, 2000,		

ISBN: 9780898750485

- 3. Nicholas Lisitsyn, Alexander Gavryusin, Oleg Trifonov, Alexander Kudryashov, "Machine Tool Design" Ardent Media Inc. ISBN: 9780829014761
- 4. CMTI, "Machine Tool Design Handbook" Tata McGraw-Hill, 2008, ISBN: 978-0-07-451564-8

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	L	Н	-	-	-	-	-	-	-	-
CO2	Μ	М	L	М	-	-	-	-	-	-	-
CO3	-	L	Μ	Н	Μ	-	-	-	-	-	-
CO4	-	-	L	Μ	Н	-	-	-	-	-	-

	PSO1	PSO2
CO1	Н	-
CO2	М	L
CO3	-	М
CO4	-	Н

TOOLING FOR MANUFACTURE IN AUTOMATION								
Comme Code			ive Group – 3)	CIE Maailar		100		
Course Code	:	10WICM241/10W11E241	4.0.0.0	CIE Marks	:	100		
Hrs/ week	:	L:1:P:5	4:0:0:0	SEE Marks	:	100		
Credits	:			SEE Duration	:	3 Hrs.		
Course Learni	ng	Objectives (CLO):						
Graduates shall	be the	able to have a finaling in manufactor	truin a					
1. Understand	une	basic of fooling in manufac	luring					
 Demonstrate the principle involved in Tooling Develop the concept of machinability 								
5. Develop the		utting tool material in manufa	oturing					
4. Evaluate the		ncepts of cutting fluids	icturing					
J. Anaryze the	0	Incepts of cutting fitting	T			10 Hrs		
Cutting Tool	М	otorials: Cutting Technolog	v an Introduct	tion The Evolution	of	Cutting Tool		
Materials Tool		patings: Chemical Vapour D	y = an mnould (CVD)	Physical Vapour I) Den/	sition (PVD)		
Diamond-Like		/D Coatings Cubic Boron	Nitride (CBN) a	nd Poly-crystalline	Die	mond (PCD)		
Natural Diamor	с, d	D Coamigs, Cubic Boron	Millioc (CDN) a	ind Tory-crystamic		uniona (ICD),		
Turning and ('hi	n-breaking Technology: Cu	utting Tool Techn	ology Chin-Develo	nme	ent Tool Nose		
Radius, and Mu	lti-	Functional Tooling.		lology, chip Develo	pin	, 10011(05 C		
		Unit	– II			12 Hrs		
Drilling and A	SS	ociated Technologies: Dril	ling Technology	Boring Tool Tech	nol	ogy Reaming		
Technology.						<i>bgy</i> , <i>iteaiiig</i>		
Milling Cutter	s ai	nd Associated Technologies	: Milling, Pocket	ing, Closed-Angle F	aces	, Thin-Walled		
and Thin-Base	d	Milling Strategies, Rotary	and Frustum-Ba	used Milling Cutte	rs -	- Design and		
Operation, Cust	om	ised Milling Cutter Tooling,	Mill/Turn Operat	tions.		C		
		Unit ·	– III			12 Hrs		
Threading Tec	hn	ologies: Threads, Hand and	Machine Taps, F	luteless Taps, Threa	ding	g Dies, Thread		
Turning, Thread	l M	lilling, Thread Rolling.	•	L ·				
Modular Tooli	ng	and Tool Management: M	Iodular Quick-Cl	nange Tooling, Too	ling	Requirements		
for Turning Cer	ter	rs, Machining and Turning Co	entre Tooling, Bal	lanced Modular Too	ling	for HS.		
		Unit	– IV			07 Hrs		
Machinability	ar	d Surface Integrity: Mac	hinability, Chatte	er in Machining C	per	ations, Milled		
Roundness, Ma	chi	ned Surface Texture, Machin	ing Temperatures	s, Tool Wear and Lif	e			
		Unit	$-\mathbf{V}$			07 Hrs		
Cutting Fluids	: P	Primary functions, high press	sure Jet-assisted	coolant delivery, ty	pes,	classification,		
selecting the co	rre	ct cutting fluid- care, handli	ng, control and us	sage of cutting fluid	s, m	ulti-functional		
fluids, disposal	of	cutting fluids, health and safe	ety factors.					
Course Outcor	nes	5:						
After going three	oug	h this course the student will	be able to:					
CO1: Illustrate	CO1: Illustrate fundamental concepts of tooling in automation manufacturing							
CO2: Analyze	th	e concepts of Tooling						
CO3: Explain	the	principles of Tooling						
CO4: Evaluate	e th	e machining and coolant cap	abilities					
Reference Real	ze							
Neierence B00	ĸS							

- 1. Graham T. Smith "Cutting Tool Technology- Industrial Handbook" Springer.2nd Ed, ISBN 978-1-84800-204-3.
- 2. Cyrol Donaldson, "Tool Design" -, Tata McGraw Hill, , India, 4th Ed ISBN 0070992746.
- 3. Edward G Hoffman, "Fundamentals of Tool Design" SME, USA. ISBN 0872634906.
- 4. David A.Stephenson, John S. Agapiou, "Metal cutting theory and practice", CRC Taylor and Francis publishers, 2nd Ed. ISBN 0824795792.

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η	L	-	-	-	-	-	-	-	-	-
CO2	L	Н	Μ	-	-	-	-	-	-	-	-
CO3	-	L	Μ	Н	Μ	-	-	-	-	-	-
CO4	-	-	L	М	Н	-	-	-	-	-	-

	PSO1	PSO2
CO1	Н	_
CO2	М	L
CO3	-	М
CO4	_	Н

INDUSTRIAL ROBOTICS								
		(Ele	ctive Group – 3)			1		
Course Code	:	16MMD242/16MCM2	242	CIE Marks	:	100		
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100		
Credits	:	04		SEE Duration	:	3 Hrs.		
Course Learni	ng	Objectives (CLO):						
Graduates shall	be	able to						
1. Understand	the	e structure and configurat	tion of Industrial	robots.				
2. Analyze the kinematic and dynamic related analysis of industrial robots.								
3. Demonstrate the basic structure of trajectory interpolator								
4. Describe the	e co	onfiguration of various ty	pes of autonomo	us robots		I		
		Uı	nit — I			07 Hrs		
Automation a	ıd	Robotics - Historical	Development, De	efinitions, Basic Str	uctu	re of Robots,		
Robot Anatomy	y,	Complete Classification	of Robots, Fur	ndamentals about R	obo	t Technology,		
Factors related	to	use Robot Performance,	Basic Robot Co	nfigurations and the	ir R	elative Merits		
and Demerits,	Ţ	ypes of Drive System	s and their Rel	ative Merits, the	Wri	st & Gripper		
Subassemblies.	C	oncepts and Model abo	out Basic Contro	l System, Control I	_00]	ps of Robotic		
Systems, PTP a	nd	CP Trajectory Planning,	Control Approac	hes of Robots		I		
		Un	nit – II			10 Hrs		
Kinematics of	R	obot Manipulator: Intr	oduction, Genera	al Description of R	obot	t Manipulator,		
Mathematical I	Pre	liminaries on Vectors a	& Matrices, Hor	nogenous Represent	atio	n of Objects,		
Robotic Manipu	ilat	tor Joint Co-Ordinate Sys	stem, Euler Angle	e & Euler Transform	atio	ns, Roll-Pitch-		
Yaw(RPY) Trai	nsf	ormation, Relative Trans	sformation, Direct	t & Inverse Kinemat	ics'	Solution, D H		
Representation	&	Displacement Matrices	for Standard Cor	figurations, Geomet	rica	I Approach to		
Inverse Kinema	atic	s. Homogeneous Robot	ic Differential T	ransformation: Intro	duc	tion, Jacobian		
Transformation	1n	Robotic Manipulation	• • • • • •			10 11		
			$\frac{\mathbf{II} - \mathbf{III}}{\mathbf{I} + \mathbf{III}}$					
Robotic Work	sp	ace & Motion Traje	ctory: Introduct	ion, General Struc	ture	s of Robotic		
WORKSpaces, N	lan	ipulations with n Revo	olute Joints, Rot	otic workspace Pe	rior	mance Index,		
Extreme Reach		OI KODOUC Hands, Ko	obotic Task Des	Scription. Robotic N	/1011	on Trajectory		
Design: – Introc		Conorol Design Consi	deration on Trai	actoriase 4.3.4 & 2	terp	Trainatoria		
Admissible Mor	es.	Trajactorias	defation on fraj	ectories. $4-5-4 \propto 5$	-3-3	5 Trajectories,		
Additissible Mo	101	I Hajeciones.	; + TX /			12 Urg		
Dynamics of	D	obotia Maninulators:	Introduction I	Pond Graph Mode	line	12 IIIS		
Manipulators	n Gvi	opolic Manipulators.	Dynamia Mod	oling of Pobotic N	/ing /ing	pulator Brief		
Discussion on 1	цл. [ас	amples of Done Oraph trange_Fuler (LF) Dyna	mic Modeling of	f Robotic Manipulat	ore.	- Preliminary		
Definitions Ge	Laz nei	alized Robotic Coording	ates Dynamic Co	nstraints Velocity	$\delta r \Delta$	- I terminary		
Moving Frame	s	Robotic Mass Distribu	ition & Inertia	Tensors Newton's	\mathbf{x}_{Fc}	ution Fuler		
Equations The	, .	Lagrangian& Lagrange	's Equations A	nulication of Lag	ano	e-Euler (LE)		
Dynamic Mode	lin	g of Robotic Manipula	tors: - Velocity	of Joints Kinetic F	ner	gy T of Arm		
Potential Energy	v	V of Robotic Arm. T	"he Lagrange L.	Two Link Robotic	c D	vnamics with		
Distributed Mas	55. 55.]	Dynamic Equations of M	Iotion for A Gene	eral Six Axis Manipu	lato	r.		
	,.	Ur	nit – V	p		07 Hrs		
Autonomous Robot: Locomotion Introduction, Key issues for locomotion Legged Mobile Robots								
Leg configurati	on	s and stability Examples	s of legged robot	locomotion Wheel	ed N	Mobile Robots		

Wheeled locomotion: the design space Wheeled locomotion: case studies Mobile Robot Kinematics Introduction Kinematic Models and Constraints Representing robot position Forward kinematic models Wheel kinematic constraints Robot kinematic constraints, Mobile Robot Maneuverability Degree of mobility Degree of steerability Robot maneuverability.

Course Outcomes:

After going through this course the student will be able to:

- CO1: Analyze the manipulator design including actuator, drive and sensor issues
- CO2: Calculate the forward kinematics, inverse kinematics and Jacobian industrial robots
- CO3: Solve trajectory and dynamic related robotic problems
- CO4: Evaluate the different configurations and stability of autonomous robots

Reference Books

- 1. Mohsen Shahinpoor "A Robot Engineering Textbook" Harper & Row publishers, New York. ISBN:006045931X
- 2. Fu, Lee and Gonzalez, "Robotics, control vision and intelligence," McGraw Hill International. ISBN:0070226253
- 3. John J. Craig, "Introduction to Robotics", Addison Wesley Publishing, ISBN:0201543613
- 4. Roland Illah R. Siegwart Nourbakhsh, Autonomous mobile robots, The MIT Press Cambridge, Massachusetts London, England, 2004.ISBN:0262015358

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н			L							
CO2	Μ			Μ							
CO3	М	М	М	М							
CO4	Μ	Μ	Μ	М							

	PSO1	PSO2
CO1	L	L
CO2	М	
CO3		L
CO4	L	Н

AUTOMATION AND PRODUCTION SYSTEMS									
(Elective Group – 4)									
Course Code:16MCM251CIE Marks:100									
Hrs/Week:L:T:P:S4:0:0:0SEE Marks:100									
Credits:04SEE Duration:3 Hrs.									
Course Learning Objectives (CLO):									
Graduates shall be able to									
1. Understand the basic Fundamentals of Automation Production System									
2. Demonstrate the principles of PLC									
3. Demonstrate the principles of Automated MH, AS/RS									
4. Analyze the equations in Material Handling, Storage System									
5. Explain the components of and Automated Data Capture, Assembly									
Unit – I 0	8 Hrs								
Introduction: Production System Facilities, Manufacturing Support Systems, Automatic	on in								
Production Systems, Manual Labor in Production Systems, Automation Principles and Strate	egies,								
Ten Strategies for Automation and Production Systems, Basic Elements of Automated Sy	'stem,								
Advanced Automation Functions, Levels of Automation.	2 11								
Unit – II I. Derie Elemente ef en Antenneted Contant Discute Manufact	3 Hrs								
Basic Elements of an Automated System: Process industries versus Discrete Manufact	turing								
Process Control	iputer								
Sonsors Actuators and Other Control System Components: Sensors Actuators Analy	og to								
Digital Conversion Digital-to-Analog Conversion Input / Output Devices for Discrete Data	Jg-10-								
Unit – III	5 Hrs								
Discrete Control Using Programmable Logic Controllers and Personal Computers: Di	screte								
Process Control, Ladder Logic Diagrams, Programmable Logic Controller, Personal Comp	outers								
Using Soft Logic.	•								
Material Handling and Transportation System: Overview Material Handling Equip	ment,								
Considerations in Material Handling System Design, Principles of Material Handling, Indu	ıstrial								
Trucks, Automated Guided Vehicle Systems, Monorails and Other Rail Guided Vehicles,	, IDA								
Conveyors Systems, Crane and Hoists, Analysis of Material Transport Systems.									
Unit – IV 0	6 Hrs								
Storage Systems: Storage System Performance, Storage Location Strategies, Convention	tional								
Storage Methods and Equipment, Automated storage systems, Engineering Analysis of St	orage								
System.	< 								
Unit – V 00	6 Hrs								
FMS and Automated System Assembly: What is FMS, FMS Components, FMS Application	ations								
and Benefits, FMS Planning and Implementation Issues, Quantitative Analysis of Flexible									
Manufacturing Systems, Fundamentals of Automated Assembly Systems, Design for Automated									
Assembly, Quantitative Analysis of Assembly Systems									
Course Outcomes:									
After going through this course the student will be able to:									
CO1: Classify the types of Automation and Production System									
CO1: Classify the types of Automation and Production System CO2: Analyze the concepts of Automation									

CO3: Apply the concepts of mathematical equation in material handling and AS/RS and Automation System

CO4: Evaluate the techniques involved in FMS

Reference Books

- 1. David J Parrish "Flexible manufacturing" Butterworth-Heinemann Publisher, 1990 ISBN: 9780750610117
- 2. Mikell P Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall India (P) Ltd, 2008 ISBN: 9780132393218
- 3. William W. Luggen "Flexible Manufacturing Cells & Systems" Prentice hall, 2006, ISBN: 9780133217384
- 4. Viswanadham N, Narahari Y, "Performance Modeling of Automated Manufacturing Systems", Prentice Hall of India (P) Ltd, 1992. ISBN: 9780136588245

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	L	-	-	-	-	-	-	-	-	-
CO2	М	М	L	М	-	-	-	-	-	-	-
CO3	L	Н	Μ	Н	Μ	-	-	-	-	-	-
CO4	-	L	L	Μ	Н	-	-	-	-	-	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	Н	-
CO2	L	L
CO3	-	М
CO4	-	Н

COMPUTER AIDED PROCESS PLANNING							
		(Ele	ctive Group – 4)		1	l	
Course Code	:	16MCM252		CIE Marks	:	100	
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100	
Credits	:	04		SEE Duration	:	3 Hrs.	
Course Learni	ng	Objectives (CLO):					
Graduates shall	be	able to					
1. Understand	the	e need of computer aided	process planning				
2. Differentiat	e g	chiping parameter and to	pe CAPP system	or planning			
$\frac{3}{4}$ Analyze too	llia I n	ath to implement techniq	ue of CAPP	n plaining			
4. 7 maryze too	<u>1 p</u>	Ir	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$			10 Hrs	
Introduction t	n (CAPP: Information requ	irement for proce	ess planning system	R	ole of process	
planning, adva	nta	ges of conventional pro-	ocess planning of	over CAPP. Structu	re	of Automated	
process plannin	g s	vstem, feature recognitio	n, methods.				
Generative CA	NP1	P system: Importance.	Principle of Gen	erative CAPP syste	m,	automation of	
logical decision	s, l	Knowledge based system	s, Inference Engi	ne, implementation,	ben	efits.	
		Un	it — II			10 Hrs	
Retrieval CA	PP	system: Significance,	group technolo	ogy, structure, rela	ativ	e advantages,	
implementation	, aı	nd applications.					
Selection of	ma	nufacturing sequence:	Significance, a	alternative manufac	turi	ng processes,	
reduction of tot	al s	et up cost for a particular	r sequence. quanti	itative methods for o	ptir	nal selection,	
Examples.		T T 1					
		Uni	<u>it – III</u>			10 Hrs	
Determination	0	f machining paramet	ters: reasons fo	or optimal selection	on fama	of machining	
parameters, ene	ect anti	of parameters on produc	conventional and	reach colving ontin	iere	tion models of	
machining proc	nau ess	es	conventional app	illach, solving optin	IIZa	uon models of	
	033	Uni	it – IV			08 Hrs	
Determination	0	f manufacturing toler	ances: design to	olerances manufac	turii	ng tolerances.	
methods of tol	era	nce allocation. sequentia	al approach, inte	gration of design a	nd	manufacturing	
tolerances, adva	inta	ages of integrated approa	ch over sequentia	l approach.		U	
		Un	nit – V	••		10 Hrs	
Generation of	too	l path: Simulation of ma	achining processes	s, NC tool path gene	ratio	on, graphical	
Implementation	, '	determination of optim	nal index position	ons for executing	fix	ted sequence,	
quantitative me	tho	ds.					
Implementatio	Implementation techniques for CAPP: MIPLAN system, Computer programming languages tbr						
CAPP, criteria for selecting a CAPP system and benefits of CAPP. Computer integrated planning							
systems, and Capacity planning system.							
Course Outcor	nes	S :					
After going through this course the student will be able to: CO1: Explain the role of CAPP in manufacturing system							
COI: Explain	the	e role of CAPP in manufa	icturing system	aaa alaaniin -			
CO2: Apply S		d determine the machini	ng paramatar and	manufacturing	ona		
CO3. Allalyze	all a th	e tool path to implement	f the CAPD technic		ance	5	
CO4. Evaluate	- ui	to tool paul to implement		Yuu			

Reference Books

- 1. P N Rao, "Computer Aided Manufacturing", Tata McGraw Hill Publishing Company, 2000, ISBN: 0074631039
- 2. Nanua Singh, "Systems approach to Computer integrated Design and Manufacturing", John Wiley & sons, 1996. ISBN:0471585173
- 3. Gideon Halevi and Rol and. D. Weill, "Principles of Process Planning, A logical approach ', Chapman & Hall 1995. ISBN:978-0-412-54360-9
- 4. Tien Chien Chang, Richard. A. Wysk, "An introduction to Automated process planning system", Prentice Hall, 1985. ISBN:0134781406

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	L			L						
CO2	Μ	Μ									
CO3	Μ	Μ	L	L	L						
CO4	Μ	М	L	L							

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	М	L
CO2	М	L
CO3	М	L
CO4		Н

		MIN	NOR PROJEC	CT				
Course Code	:	16MCM26		CIE Marks	:	100		
Hrs/Week	:	L:T:P:S	0:0:10:0	SEE Marks	:	100		
Credits	:	05		SEE Duration	:	3 Hours		
Course Learni	ng	Objectives:						
Students are abl	e t	0						
1. Understand	the	e method of applying eng	ineering know	ledge to solve specific	proł	olems.		
2. Apply engineering and management principles while executing the project								
3. Demonstrate	e th	ne skills for good present	ation and techr	nical report writing skil	ls.			
4. Identify and	SO	lve complex engineering	g problems usin	g professionally presci	ribec	l standards.		
GUIDELINES								
1. Each project group will consist of maximum of two students.								
2. Each stue	den	t / group has to selec	ct a contempo	prary topic that will	use	the technical		
knowledg	e o	f their program of study	after intensive	literature survey.				
3. Allocation	1 0	f the guides preferably in	accordance w	ith the expertise of the	facu	ılty.		
4. The numb	ber	of projects that a faculty	can guide wou	ld be limited to four.				
5. The mino	r p	roject would be performe	ed in-house.					
6. The impl	em	entation of the project	must be pref	erably carried out us	ing	the resources		
available	in t	the department/college.						
Course Outcor	nes	3:						
After going three	oug	h this course the student	s will be able to)				
CO1: Concep	tua	lize, design and impleme	ent solutions fo	or specific problems.				
CO2: Commu	inio	cate the solutions through	h presentations	and technical reports.				
CO3: Apply 1	CO3: Apply resource managements skills for projects							
CO4: Synthes	size	e self-learning, team wor	k and ethics.					

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members : guide, two senior faculty members and Head of the Department.

Phase	Activity	Weightage
Ι	Synopsis submission, Preliminary seminar for the approval of	20%
	selected topic and Objectives formulation	
II	Mid-term seminar to review the progress of the work and	40%
	documentation	
III	Oral presentation, demonstration and submission of project report	40%

****Phase wise rubrics to be prepared by the respective departments**

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of objectives	10%
• Design and simulation/ algorithm development/experimental setup	25%
• Conducting experiments / implementation / testing	25%
• Demonstration & Presentation	15%
• Report writing	25%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Presentation / Demonstration of the project	20%
3.	Methodology and Experimental Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	М	М	Н	Н	Н			М		Н	Н
CO2					Н			Н	Н	Н	
CO3	Н	Н	М		М	М	Н	Н		М	Н
CO4		Н				Н	Μ	М	М	Н	

	PSO1	PSO2
CO1	Н	М
CO2		L
CO3		М
CO4	М	М