RV College of Engineering gen and Green Technology [CH,GT

Go, change the world

Centre for Hydrogen and Green Technology [CH₂GT]

Driving India towards clean energy technology

Vision

Development of reliable, affordable and sustainable Hydrogen energy systems and solutions

- Providing green energy solutions to industrial and societal needs
- Developing well to wheel carbon neutral renewable/green hydrogen energy systems
- Promoting the implementation of renewable energy systems

2/17/2023

Need for the Centre

Sustainable development goals of the United Nations: An urgent call for action by all countries

- Create an avenue for affordable, reliable, sustainable and modern energy
- Combat climate changes and its impacts
- Revitalize the global partnership for sustainable development

National Hydrogen Energy Mission: A Govt. of India initiative

- Focus on generation of hydrogen from green power resources
- To link India's growing renewable capacity with the hydrogen economy

Hochschule für angewandte Wissenschaften Würzburg-Schweinfurt

Team (12 members)

Name	Department	Expertise / Interests
K N Subramanya	Industrial Engineering & Management	Supply Chain Management, Lean Manufacturing, Operations Management
Manjunatha C	Chemistry	Inorganic Nanomaterials - Synthesis, Functionalization, Characterization, Green Hydrogen Generation
Ujwal Shreenag Meda	Chemical Engineering	Process and Product Design, Hydrogen Technology, Cloud Computing & Data Science
Radhakrishna	Civil Engineering	Geopolymer Composites, Construction Technology
R Suresh	Chemical Engineering	Solar Cells Fabrication, Biomass Gasification, Environmental Technology
Jagadish Patil	Chemical Engineering	Biofuels, Waste to Energy, Equipment Design
Basavaraja R J	Chemical Engineering	Carbon Capture, Combustion, Chemical Looping Combustion
Anupama Joshi	Chemical Engineering	Computational Fluid Dynamics, Thermic Fluids, Energy Storage
Vinutha Moses	Chemical Engineering	Polymer Composites, Bioremediation, Sustainable Technology
Sushmita Sarkar	Electrical Engineering	Solar PV Systems, Renewable Energy, Power Systems Analysis
Madhu B R	Electrical Engineering	Solar Energy, Hydal Power, Power Electronics
Chandra Kumar	Mechanical Engineering	Bio Energy, Mechanical Design, IC Engines
17/2023		

Centre for Hydrogen and Green Technology [CH₂GT]

Modules

2/17/2023

Centre for Hydrogen and Green Technology [CH₂GT]

Go, change the world

Overview

SI.No.	Activities since March 2021	Count	Faculty Involved	Students Involved
1	Internship	3	8	99
2	Student Projects	10	3	17
3	Conference Proceedings	25	8	25
4	Q1 Publications	5	2	4
5	Patents	2	2	1
6	Tech Talks	7	1	7
7	External Collaborations	4	2	-
8	Funded Project	1	2	-
9	Courses	1	1	61
10	Proposals	5	3	-
11	MoUs	4	1	-

2/17/2023

Activities under H₂ Generation

SI.No.	Activity	Remarks
1	Nanocomposite based catalysts development to enhance OER performance	4 SCI Publications
2	Hybrid catalyst development for H ₂ generation via electrochemical splitting	1 SCI Publication
3	Hydrogen generation via electrohydrogenesis	1 Ph.D Completed
4	A method to ehnance the performance of a microbial fuel cell	1 Patent published
5	Designing a solar pv module for powering an electrolyzer	1 Conference Proceeding 1 student project

Designing a Solar PV Module For Powering An Electrolyzer

Aditi Pandey^{1*}, Ujwal Shreenag Meda^{1,3*}, Yashesh Vijay Rajyaguru¹, Manjunatha C^{2,3} ¹Department of Chemical Engineering, RV College of Engineering, Bengaluru, India ²Department of Chemistry, RV College of Engineering, Bengaluru, India ³Centre for Hydrogen and Green Technology Research, RV College of Engineering,

Introduction

- Need to reduce greenhouse gas emissions
- Hydrogen, a green and clean energy carrier can be generated via electrolysis
- Integration of the electrolyzer with a solar PV system can make the process fully sustainable

Solar PV Technologies

Working of a Solar Cell

Solar Cell Informal	Monomer Efficiency (%)	Module Efficiency (%
Monocrystalline silicon	22	10-15
Polycrystalline silicon	18	9-12
Boron-Phosphorus compound	30	17
ThinFilm Amorphous Silicon	13	10
ThinFilm Cu-In	19	12
ThinFilm Cd-Te compound	16	9

Table 1. Comparison of efficiencies of solar cells

Fig 1. Typical representation of a solar cell

Electric Potential

Design Procedure for a Standalone/ Off-Grid System

- Standalone systems require an inverter charge controller mechanism with a Maximum Power Point Tracker (MPPT) and batteries for storage of surplus electricity
- Systems which are widely used employ an inverter to convert D.C electricity produced by the modules into A.C electricity
- For such a system, the solar modules have to be designed larger than the load requirement The design process includes the following steps:

Integration of Solar PV Systems with Electrolyzers

- Solar energy is ubiquitous, making it a viable contender for coupling with electrolyzers
- A PV-Electrolysis system has been developed, achieving a 48-h solar-tohydrogen (STH) efficiency of 30%, thus demonstrating the potential of PV systems in the generation of green hydrogen
- Solar PV arrays can be directly coupled with PEM electrolyzers to improve the system efficiency
- The I-V characteristics of the PVelectrolyzer systems have to be accurately predicted

FinGaP (1.9 Galax (3.4	
Photosoftaic	e-

HLO ++ reminutement

Electrolysen Unreacted H₂O H₂O

loiysis system comprising electrolyzers connected in series and a tripleiunction solar cell

Challenges Associated	Conclusion
Solar resource is intermittent and subject to fluctuations A storage system is required, which adds to the life cycle cost of the system High initial costs of setting up solar PV arrays, unpredictable output and lack of economical-efficient energy storage	 The mismatch between the Maximum Power Point of the solar cell and the I-V characteristics of the electrolyzer needs to be resolved Overcoming such challenges can lead to the successful integration of solar PV systems with electrolyzers

References

[1] B. P. Singh, S. K. Goyal, and P. Kumar, 43, (2021) [2] J. Jia et al., Nature Communications, 7, (2016). [3] C. H. Huang, H. Y. Pan, and K. C. Lin, Applied Sciences, 6, (2016).

2/17/2023

Activities under H₂ Storage

SI.No.	Activity	Remarks
1	Challenges Associated with Hydrogen Storage Systems due to the Hydrogen Embrittlement of High Strength Steels	1 Conference Proceeding 1 student projet
2	Metal Hydrides for Solid Hydrogen Storage – Opportunities and Challenges	1 article under review 1 student project
3	Liquid Organic Hydrogen Carriers for hydrogen storage	1 student project

2/17/2023

Centre for Hydrogen and Green Technology [CH₂GT]

Go, change the world

Hydrogen Impermeable Materials For Efficient Hydrogen Storage

Nidhi Bhat¹, Chitra Agrawal¹, Ujwal Shreenag Meda^{1,2*}

¹ Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
² Centre for Hydrogen and Green Technology Research, RV College of Engineering, Bengaluru, India Email IDs: nidhibhat.ch19@rvce.edu.in, ujwalshreenagm@rvce.edu.in

Introduction

- Hydrogen is increasingly becoming a more viable clean transportation and energy storage solution. Efficient hydrogen storage systems are important for the adaptation of hydrogen as an alternate fuel.
- Hydrogen embrittlement (HE) is a major problem in steels, due to which high strength steels (HSSs) are avoided in applications. Efficient storage methods/materials are needed for preventing embrittlement.

Hydrogen Storage and HE

- Hydrogen storage (as compressed gas, liquid hydrogen, cryo-compressed storage) using vessels made of steel and composites are heavy and expensive.
- Lightweight, compact, and durable methods/materials can be achieved with material-based storage methods.
- Hydrogen permeation and HE mechanisms (like Hydrogen Enhanced Decohesion Mechanism (HEDE), Hydrogen Enhanced Localized Plasticity (HELP)) must be understood.

Figure 2. HE Mechanisms: (a) HELP (b) HEDE

Impermeable Materials

Coatings like graphene, reduced graphene oxide (rGO), oxygen, carbon, nitrogen, MoS₂, TiC, TiN, TiAIN and TiAIN/TiMoN multi-layered coating can also reduce HE.

Figure 3. Mechanisms to modify steel to make it more resistant to hydrogen.

 Chemical vapor deposition (CVD), electroplating discharge (EPD), gas diffusion, plasma diffusion and high velocity oxygen fuel (HVOF) are common coating techniques. rGO is most promising for HSSs.

Figure 4. Hydrogen traps in multi-layered coatings to minimize permeability. Figure 5. rGO coating using EPD technique.

Table 1. Coating Techniques

Material	Туре	Deposition Technique
Al, Ni, Zn	On Top	Electroplating
Ti-DLC	On Top	Physical Vapor Deposition
Carbon, Nitrogen	Diffusion	Gas Diffusion
Oxygen	Diffusion	Plasma Diffusion

Conclusion

- Energy efficiency, material properties, durability, low energy density per unit volume, long refueling times, and high costs can be overcome by using better hydrogen impermeable materials.
- HSSs should be encouraged due to their high yield strength, high reliability and ability to reduce weight. Many techniques have not been tried on HSSs yet, but can be, especially with further knowledge on microstructures. This could help shift to green hydrogen technology.

References

- Motonori Tamura, "Hydrogen Permeation Characteristics of TiN-Coated Stainless Steels," J. Mater. Sci. Eng. A, vol. 5, no. 6, pp. 197–201, 2015, doi: 10.17265/2161-6213/2015.5-6.002.
- Ramin Moradi, Katrina M. Groth, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis, *International Journal of Hydrogen Energy*, Volume 44, Issue 23, 2019, Pages 12254-12269.

10

Activities under H₂ Handling and Safety

SI.No.	Activity	Remarks
1	Method and system to develop a polymer - hydrogel - metal oxide composite based sensor to detect and quantify hydrogen gas	1 Patent Granted
2	Method and system for developng a sensor to detect hdyrogen gas at ambient conditions	1 Patent Published
3	Product design of a hydrogen sensing system	1 Conference Proceeding
4	Developmetn of IoT enabled hydrogen sensing system	1 Conference Proceeding
5	Market study of hydrogen sensors and sensing systems	1 Conference Proceeding

2/17/2023

Centre for Hydrogen and Green Technology [CH₂GT]

Go, change the world

Product Design Of A Hydrogen Sensing System

Sharanya Chakravarthia*, Akshit M Hartia and Ujwal Shreenag Medaa,b*

RV RV RV

^a Department of Chemical Engineering, RVCE, Bengaluru, India
 ^b Centre for Hydrogen and Green Technology Research, RV College of Engineering, Bengaluru, India

 * Email: <u>sharanya.ch18@rvce.edu.in</u>, <u>ujwalshreenagm@rvce.edu.in</u>

1. Introduction

In the era where fuel-celled vehicles are gaining importance, there is a growing need for hydrogen sensing systems which give quick and accurate information about the hydrogen gas that is both qualitative and quantitative. Effective product design of hydrogen sensing systems is essential to bring them to the market and target specific end users.

2. Objective

To develop a hydrogen sensing system by utilizing the principles of design thinking and highlighting various aspects of product design.

3. Methodology

Keeping design thinking at the core of our product design strategy, a few more steps were added to streamline the process.

4. Results

Three robust designs were developed using Solidworks and Tinkercad Software. All the three designs were integrated with a Wi-Fi enabled circuit to enable IoT applications.

Circuit connections for a Wi-Fi enabled hydrogen gas sensing system

6. Conclusion

Design 1	Design	2	Design 3
Portable and can be hooked anywhere	Innovative product shape.		Flushing out gas is easy due to the exhaust fan.
Uses flexible electronics	High surface area for sensing		Higher area of sensing compared to Designs 1 and 2.
Problems			Solutions
Inadequate amount of literature pertaining to product design of gas sensing systems.		Implemented the design thinking methodology in product development	
To address the problem of improper flushing of gas, which plays a crucial role in giving accurate readings of current hydrogen concentration by making sure the gas previously present is completely removed.		In design 3 tackled by facilitates f system fre- taken.	, the problem of flushing of gas was making use of an exhaust fan that orced convection hence, making the e of gas before the next reading is
The size of the sensor had to be very small to make it suitable for portable applications, but it was necessary to also make the circuit components fit inside the given Design.		A survey was done to find out the relevant commercially available circuit components that are smaller in size and also economical.	

References

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, Sensors Actuators, B Chem., 157, (2011)
 A. Rangaswamy and G. L. Lilien, J. Mark. Res., 34, (1997)

3. M. Rossi, D. Brunelli, A. Adami, L. Lorenzelli, F. Menna, and F. Remondino, Proc. IEEE Sensors, (2014)

2/17/2023

Centre for Hydrogen and Green Technology [CH₂GT]

Centre for Hydrogen and Green Technology [CH₂GT]

Go, change the world

Market Study of Hydrogen Sensors and Sensing Systems

Sripriva1^{*}, Ujwał Shreenag Meda^{2*} ¹Department of Chemical Engineering, RV College of Engineering, Bengaluru, India ²Centre for Hydrogen and Green Technology Research, RV College of Engineering, Bengaluru, India * Email: sripriyau.ch18@rvce.edu.in, ujvralshreenagm@rvce.edu.in

Introduction

The future of hydrogen is abundant with its numerous applications in refineries, fortilizer industries, nuclear plants and other upcoming technologies like environment friendly fuels. With the market for hydrogen being so dynamic and due to its peculiar properties such as high fiammability, low viscosity, low density, high escape rate and the ability to burn with an invisible fiame to naked eye, a sensing system in place becomes a prerequisite.

Fig1:Growth of Hydrogen market Fig2 Main demand of Hydrogen from 1975-2018 markets

However, its properties demand for a more rigid safety system. In the past there have been many accidents due to absence of a safety system in Japan and in the USA most of the accidents which occurred between the years 2005-2014 was due to leakage in the screw joints of the hydrogen. carrying hose which could have been detected in the presence of a hydrogen sensing arrangement.

Market Survey & Study of commercially available sensors

The US department of energy has classified hydrogen as the next elternative source of fuel among 6 others. However, a sensing system is a prerequisite for deployment of hydrogen as fuel. Presently there are a large variety of censors available in the market. The usefulness of gas sensors predominantly depend on the factors such as sensitivity, selectivity, response time, accuracy, range of detection, durability and reliability. The best performance is obtained by using an optimal sensor for a particular application.

FigS:Comparison between different types of sensors (with 0 being worst and 5 being best for detection, selectivity and response time)

Survey			
TABLE:1 - Curre	ent types of se	neors used in Indi	ustries
Industry	Sensor type	Response time	Accuracy
Nuclear power plant	Cetalytic pellistor	<20sec	± 2 % Fu Scale
Fertilizer	Metal oxide	<12sec	±5% Full scale
Polymer	Catalytic- palistor	10-15sec	±3% Full scale

Future of hydrogen sensors

Hydrogen is being quantified by using oxygen sensors to find the emount of oxygen being displaced.

to increase the selectivity and for fast response.

Sensors based on optical phenomena such as surface plasmon. resonance where the structure has nano sized metal hydrides. Industrial Trucks (Forklifts)-Fuel cell energized industrial trucks is a technology in the near future using hydrogen as a fuel.

References

LL Boon-Brett et al., "Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary." applications," Int. J. Hydrogen Energy, vol. 35, no. 1, pp.

2.W. Butther et al., "Hydrogen Safety Sensor Performance and Use Gap Analysis Preprint," no. November, 2017. Wikipedia is not a reference.

Conclusion

mon combaring mapohie time price accuracy

Fig 4 Relationship between accuracy, price and response time

SWOT Analysis					
	An end the significant of the si	Research The cost of the cost of the cost	A part touched and to part touched and to part touched and to part touched and	Brande The same braid region and braid region and and region and region and region and region and region and region an	
		TRA	*	15	

1/Many papers compare the different sensors in terms of their technical and economic feasibility and claim hydrogen and its Graphene gas sensors are combined with metal oxide nanoparticles sensing systems as the next big innovation

> 2)Socie-cultural and political factors like lack of policies which push the use of fuel cell powered vehicles and its economically Viable production to attract customers, are not taken into consideration

2/17/2023

Activities under H₂ Applications

SI.No.	Activity	Remarks
1	Electrolyzers for green hydrogen generation and their integration with fuel cells	1 Conferene Proceeding 1 student project
2	Alternatives to conventional platinum based catalysts in PEMFCs	1 Conferene Proceeding 1 student project
3	Development of a PEMFC powered two wheeler	1 project proposal

16

17

Activities under Green Technology

SI.No	Activities	Remarks
1	Geo-polymer composites and NOx reduction	1 funded project
2	A Method and System to Enhance the Properties of Cementitous Products	1 patent published
3	Nox reduction using nano coatings	2 conference proceedings 6 student projects

Project Title: Development of geopolymer composites for enhanced mechanical properties and to subside air pollution by the addition of nano particles with emphasis on achieving content uniformity

Sponsoring Agency: DST – Nano Mission

Sanction Order: SR/NM/NT-1025/2017

Total Cost: Rs. 70,04,306

Investigators: Dr. Radhakrishna, Professor and Head, Civil Engineering and Dr. Ujwal Shreenag M, Assistant Professor, Chemical Engineering

Labs created: Nanomaterial synthesis lab (8 nano powders including thin films for sensors)

Bulk solids blending lab (Nauta Mixer – to uniformly mix 0.1% nano powder with rest of the cementitious materials)

Go, change the world

Nauta Mixer

Fume hood for Nanomaterial Synthesis

Pavan Kumar R^a, Sachin K c^a, Radhakrishna^a, Ujwal Shreenag Meda^b ^a Department of Civil Engineering, ^b Department of Chemical Engineering

Patent - Granted

Patent Number: 338004

Method and system to develop a polymer

- hydrogel - metal oxide composite based sensor to detect and quantify hydrogen

gas

Inventors: Ujwal Shreenag M, Lourdu Antony Raj, Shripathi ramakrishnan, Maitri Uppaluri, A R Phani Filing Date: 11.04.2018 Patent Published: 18.10.2019 **Granted on: 05.06.2020**

Patent - Published

(12) PATENT	APPLICATION	PUBLICATION
-------------	-------------	-------------

(19) INDIA

(22) Date of filing of Application :11/04/2016

(21) Application No.201641012578 A

(43) Publication Date : 13/10/2017

(54) Title of the invention : METHOD AND SYSTEM FOR DEVELOPING A SENSOR TO DETECT HYDROGEN GAS AT AMBIENT CONDITIONS

(51) International classification	:G01M	(71)Name of Applicant :
(31) Priority Document No	:NA	1)R.V. College of Engineering
(32) Priority Date	:NA	Address of Applicant : Mysore Road, R. V. Vidyaniketan Post,
(33) Name of priority country	:NA	Bengaluru 560059, Karnataka, India. Karnataka India
(86) International Application No	:NA	(72)Name of Inventor :
Filing Date	:NA	1)Ujwal Shreenag Meda
(87) International Publication No	: NA	2)Akshay Kulkarni
(61) Patent of Addition to Application Number	:NA	3)Abhinav Bajaj
Filing Date	:NA	4)Aditya Kulal
(62) Divisional to Application Number	:NA	5)Karthik SS
Filing Date	:NA	

Patent - Published

Patent Title: A Method to Enhance the Performance of a Microbial Fuel Cell

Application number: 202141015075

Inventors: Ujwal Shreenag Meda, Pradeep G A

Filing Date: 31.03.2021

Recent Publications – SCI Journals

Iournal of Energy Storage Available online 18 November 2021, 103564 In Press, Corrected Proof (7)

Solid Electrolyte Interphase (SEI), a boon or a bane for lithium batteries: A review on the recent advances

Ujwal Shreenag Meda * h 6 A B, Libin Lal *, Sushantha M *, Paridhi Garg *

- * Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology Research, RV College of Engineering, Bengaluru, India
- ⁸ Centre of Excellence in e-Mobility, RV College of Engineering, Bengaluru, India

Received 24 June 2021, Revised 21 October 2021, Accepted 2 November 2021, Available online 18 November 2021.

Titanium Dioxide based Heterogeneous and Heterojunction Photocatalysts for Pollution Control Applications in the Construction Industry

Environmental Protection

Publication of the Institution of Chemical Engineers

Official Journal of the European Federation of Chemical Engineering:

With this journal indexed in 10 international databases, your published article can be read and cited by researchers worldwide

Recent Publications – SCI Journals

Q-1; IF = 3.73	Surfaces and Interfaces 38 (2020) 100445	
1000000	Contents lists available at ScienceDirect	I MENT
200	Surfaces and Interfaces	
ELSEVIER	journal homepage: www.elawiter.com/locate/surfin	

Rational design and synthesis of hetero-nanostructured electrospun PU@ PANI@FeS₂: A surface tailored hybrid catalyst for H₂ production via electrochemical splitting of water

С.	Manjunatha"",	Rahul S	Patil ^b , 1	M.	Sudeep",	N.	Srinivasa ^d ,	R.	Chandra	Kumar"	ŝ.
M.	P. Sham Aan ¹ , S.	Ashoka	6+070.00			-160					

Q-1; IF = 5.6

Controlled synthesis of nickel sulfide polymorphs: studies on the effect of morphology and crystal structure on OER performance

C. Manjunatha 4.4.7, N. Srinivasa b, S.K. Chaitra C, M. Sudeep d, R. Chandra Kumar d,

¹ Department of Chemistry, RV College of Depicering, Bengelaru, S60059, India
 ¹ Department of Mechanical Deparation, RV College of Depicering, Bengelaru, S60059, India
 ¹ Department of Chemistry, Deparation Surger University, Bengelaru, S60059, India
 ¹ Department of Chemistry, King Khelid University, Receiptor of Science, P.O. Box 9008, Ablie 10:413, Sead-Arabic
 ¹ Department of Chemistry, King Khelid University, Receiptor of Science, P.O. Box 9008, Ablie 10:413, Sead-Arabic
 ¹ Department of Chemistry Research Center, RV College of Depicering, Depalaru, S60059, India
 ¹ Interdisciptinary Research Center, RV college of Depicering, Bengelaru, S60059, India
 ¹ Department of DeviceDeparation, Receiptor of Depicering, Statustry, Balan
 ¹ Interdisciptinary Research Center, RV college of Depicering, Bengelaru, S60059, India
 ¹ Department of DeviceDeparation, Receiptor of Depicering, Statustry, Statustry, India

2/17/2023

Recent Publications – SCI Journals

Engineering the $M_x Zn_{1-x}O$ (M = Al³⁺, Fe³⁺, Cr³⁺) nanoparticles for visible light-assisted catalytic mineralization of methylene blue dye using Taguchi design

C. Manjunatha^{1,1} · B. Abhishek² · B. W. Shivaraj² · S. Ashoka⁵ · M. Shashank^{4,6} · G. Nagaraju⁴

Received: 29 November 2019 / Accepted: 18 February 2020 © Institute of Chemistry, Slovak Academy of Sciences 2020

Studies on anion-induced structural transformations of iron(III) (Hydr) oxide micro-nanostructures and their oxygen evolution reaction performance

C. Manjunatha and , N. Srinivasa , S. Samriddhi , C. Vidya , S. Ashoka ...

International Collaborators

1. Prof. Dr. Bruno G Pollet, AFIChemE, FRSC President of the Green Hydrogen Division of the International Association for Hydrogen Energy, Full Professor of Renewable Energy, Norwegian University of Science and Technology (NTNU) (h-index = 45, il0-index= 127, publications > 200, Citations=9000),

Norwegian University of

Science and Technology

3. Dr. Itthipon Jeerapan Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand, itthipon.j@psu.ac.th

Journal Editorial Board member Elsevier (Inorganic Chemistry Communications), Springer (Environmental Chemistry Letters) Visiting Scientist, Abu Dhabi University, UAE

International Collaborators

Prof. Dr.-Ing. Stephan Sommer Labor für Qualitätsmanagement, Fertigungsmess- und Wälzlagertechnik Hochschule Würzburg-Schweinfurt Ignaz-Schön-Straße 11 D-97421 Schweinfurt

Dr. Mohtada Sadrzadeh, PhD, PEng Associate Professor, Faculty of Engineering Mechanical Engineering Dept The University of Alberta, , Canada Email : sadrzade@ualberta.ca

Prof. Ajit Khosla, Ph.D School of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Japan. 992-8510 E-mail: <u>khosla@yz.yamagata-u.ac.jp</u> Editor: The Electrochemical Society Journals (JES and JSS) Microsystem Technologies (Springer), IEEE / IET Nanobiotechnology

Go, change the world

Industrial Collaborations

Nichrome Testing Laboratory & Research Pvt. Ltd.

CONSULTING / TESTING / TRAINING / ENGINEERING

Go, change the world

MoU with KREDL & IWPA

2/17/2023

Greening Young Minds – Student Internship

			Title
	 Internships for UG students 		Introduction to Renewable Energy, Indian Power Sector and Asset Management
	 Consists of 8 modules spread 	2	Wind measurement, analysis & Mico-sitting
	across four years		Evacuation planning of RE projects using load flow studies
	• To train the students in the RE sector	4	Wind Turbine Technology
• Ope	 Open to all engineering 	5	Heavy materials handling and foundations in Wind and Solar forms
disciplines		6	SCADA Remote monitoring and appliction of power electronics in RE projects
	 First batch of fifteen students 	7	RE Hybrid Projects and Hydrogen Technology
	started today	8	Operation and Maintanance of RE projects

Centre for Hydrogen and Green Technology [CH₂GT]

Go, change the world

Greening Young Minds – Student Internship

Centre for Hydrogen and Green Technology [CH₂GT]

Go, change the world

Open Day at CH₂GT

2/17/2023