Rashtreeya Sikshana Samithi Trust R.V COLLEGE OF ENGINEERING

(Autonomous Institution affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysuru Road Bengaluru – 560 059

SCHEME & SYLLABUS 3rd Semester

B.E- Industrial Engineering and Management (2016 Scheme)

Department Vision

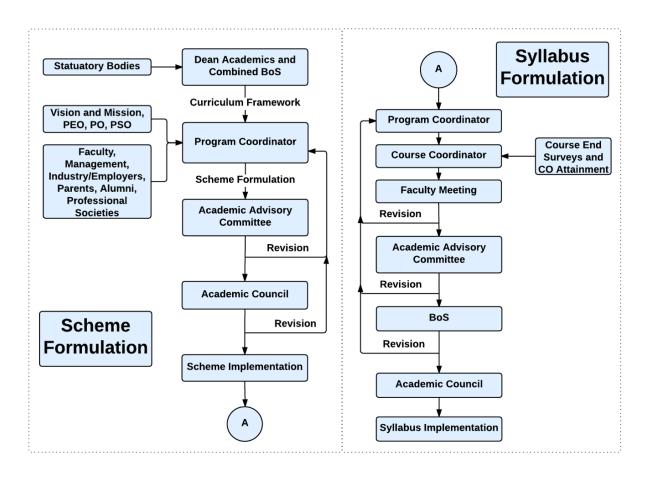
Imparting innovation and value based education in Industrial Engineering and Management for steering organizations to global standards with an emphasis on sustainable and inclusive development.

Department Mission

- IEM M1. To impart scientific knowledge, engineering and managerial skills for driving organizations to global excellence.
- IEM M2. To promote a culture of training, consultancy, research and entrepreneurship interventions among the students.
- IEM M3. To institute collaborative academic and research exchange programs with national and globally renowned academia, industries and other organizations.
- IEM M4. To establish and nurture centers of excellence in the niche areas of Industrial and Systems Engineering.

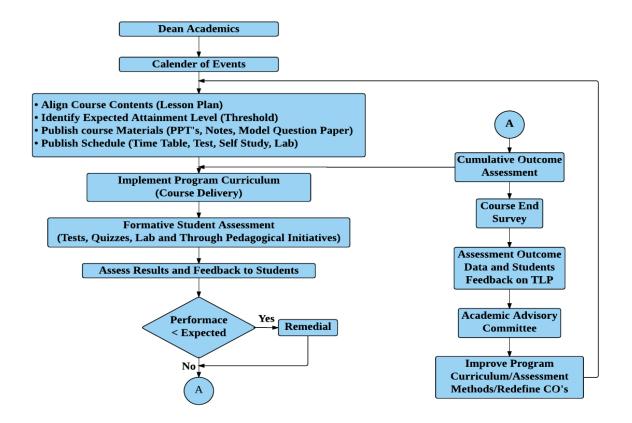
PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO	Description
PEO1	Conceive, design, implement and operate integrated systems, focus on appropriate measures of performance at strategic, tactical and operational levels.
PEO2	Develop competency to adapt to changing roles for achieving organizational excellence.
PEO3	Design and develop sustainable technologies and solutions for betterment of society.
PEO4	Pursue entrepreneurial venture with a focus on creativity and innovation for developing newer products, processes and systems.

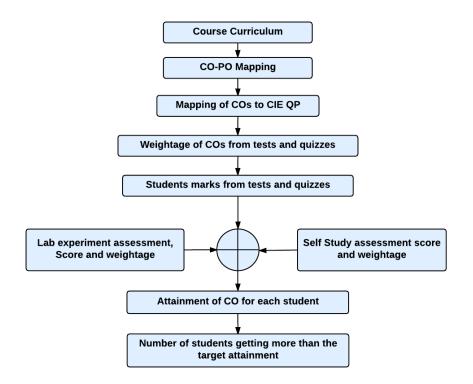

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with t h e society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

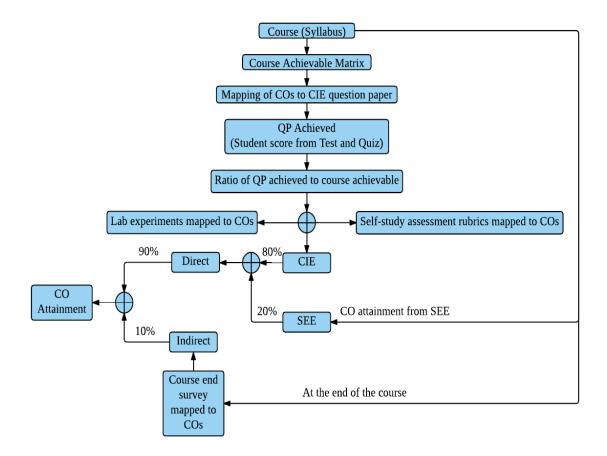
PROGRAM SPECIFIC OUTCOMES (PSOs)


PSO	Description
PSO1	Design, develop, implement and improve integrated systems that
	include people, materials, information, equipment and energy.
PSO2	Apply statistical and simulation tools, optimization and metaheuristics
	techniques for analysis of various systems leading to better decision
	making.
PSO3	Demonstrate the engineering relationships between the management
	tasks of planning, organization, leadership, control, and the human
	element in various sectors of economy.

Lead Society: Institute of Industrial Engineers (USA)



Curriculum Design Process


Academic Planning and Implementation

Process for Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

• The target may be fixed based on last 3 years' average attainment

R. V. COLLEGE OF ENGINEERING, BENGALURU – 59.

(Autonomous Institution affiliated to VTU, Belagavi)

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT SCHEME OF TEACHING AND EXAMINATION

		THIRD SEMI	ESTER					
SI.	Course	urse	D-C		Total			
No.	Code Course Title		BoS	Lecture	Tutorial	Practical	SS (EL)	Credits
1	16MA31C	Applied Mathematics-III	Maths	3	1	0	0	4
2	16EM32B	Engineering Materials #	ME	2	0	0	0	2
3	16IM33	Principles of Fluid Mechanics and Thermodynamics	IEM	3	0	0	1	4
4	16ME34	Mechanics of Materials	ME	3	1	1	0	5
5	16IM35	Measurements & Metrology	IEM	3	0	1	1	5
6	16IM36	Manufacturing Processes	IEM	3	0	1	1	5
7	16DMA37	Bridge Course Mathematics	Maths	2	0	0	0	0
		Total No. of Credits						25
		No. Of Hrs.		17	4	6	12**	39

*Mandatory Audit course for lateral entry diploma students

**Non contact hours

ME/IM/AS Common

1Hr. Theory= 1 credit

2Hrs. Practical=1credit

2Hrs. Tutorial=1 credit

4Hrs. SS(EL) = 1 Credit

- The EC,CS,EE,IS,TE,EI programs will have 16DCS37 in 3rd semester and 16DMA47 in 4th semester.
- The ME,CH,IM,CV,BT,AS programs will have 16DMA37 in 3rd semester and 16DSC47 in 4th semester

Programs	Semester	Course Code/ Course Title	Semester	Course Code / Course Title
EC,CS,EE,IS,TE,EI	2	16DCS37	4	16DMA47
	5	Bridge Course C Programming	4	Bridge Course Mathematics
ME CILIM CU DT AS	2	16DMA37	4	16D <u>CS</u> 47
ME,CH,IM,CV,BT,AS	5	Bridge Course Mathematics	4	Bridge Course C Programming

- The EC,CS,EE,IS,TE,EI programs will have 16ET32 in 3rd semester and 16EM42/16EB42 in 4th semester.
- The ME,CH,IM,CV,BT,AS programs will have 16EM32/16EB32 in 3rd semester and 16ET42 in 4th semester

Programs	Semester	Course Code/ Course Title	Semester	Course Code / Course Title
EC,CS,EE,IS,TE,EI	2	16ET32	4	16EM42/16EB42
	3	Environmental Technology	4	Engineering Materials/Biology for Engineers
ME CH IM CV DT AS	2	16EM32/12EB32	4	16ET42
ME,CH,IM,CV,BT,AS	5	Engineering Materials/Biology for Engineers	4	Environmental Technology

R. V. COLLEGE OF ENGINEERING, BENGALURU – 59.

(Autonomous Institution affiliated to VTU, Belagavi)

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT SCHEME OF TEACHING AND EXAMINATION

CI	9				Credit Allocation				
SI. No	Course Code	Course Title	BOS	Lecture	Tutorial	Practical	SS (EL)	Total Credits 4 2 5 4 5 4 5 1	
1	16IM41	Basic of Machine Design & Drawing	IEM	3	0	1	0	4	
2	16ET42	Environmental Technology [#]	BT	2	0	0	0	2	
3	16IM43	Engineering Statistics	IEM	3	1	0	1	5	
4	16IM44	Computer Integrated Manufacturing	IEM	3	0	1	1	5	
5	16IM45	Design of Work Systems	IEM	3	0	1	0	4	
6	16IM46	Operations Research	IEM	3	1	0	1	5	
7	16HS47	Professional Practice-II (Team Work and Professional Ethics)	HSS	0	0	0	0	1	
8	16DCS48	Bridge Course C Programming **	CSE	2	0	0	0	0	
		Total No. of Credits						26	
		No. Of Hrs.		17	4	6	12**	39	

*Mandatory Audit course for lateral entry diploma students **Non contact hours \$ 3 days (18 Hrs) in 3RD semester and 3 days (18 Hrs) in 4th semester, in the event of student not able to take the regular allotment, may have to complete this credit by attending other branch program.

[#] BT, CV, CH, Chemistry will handle classes

1Hr. Theory= 1 credit2Hrs. Prace	tical=1credit	2Hrs. Tutorial=1 credit	4Hrs. SS(EL) = 1 Credit						
Bridge Course Mathematics** / Bridge Course C Programming **									
EC,CS,EE,IS,TE,EI		16DCS37	16DMA47						
ME,CH,IM,CV,BT,AS		16DMA37	16DSC47						
Engineering Ma	terials/Biology fo	or Engineers AND Environmental	l Technology						
EC,CS,EE,IS,TE,EI		12ET32	12EM42/12EB42						
ME,CH,IM,CV,BT,AS		12EM32/12EB32	12ET42						

		WhatTo whomFrequency of conductionMax MarksEv		Evidence	Contribution to Course Outcome		Course		
Direct Assessment Methods		Quiz		Three	30	Answer Scripts			
	CIE	Test		Two	60/50	Allswei Scripts	80%		
	CIL	Assignment/Self-study		2 phases	10/20	Reports / Record	8070	100%	
		Laboratory		Weekly	50	Books			
	SEE	Semester End Examination	Students	End of every semester Consisting of Part-A and Part-B	100	Answer Scripts	20%		90%
D				End of every semester laboratory	50				
Indirect Assessment methods	Course End Survey		Students	End of course		Questionnaire Based on COs		10%	

	Semester - III							
	APPLIED MATHEMATICS - III							
	(COMMON TO BT, IEM)							
Cou	rse Code: 16MA31C	CIE Marks: 100						
Hrs/	Week: L:T:P:S : 3:1:0:0	SEE Marks: 100						
Crea	Credits: 04 SEE : 3 Hrs							
Cou	rse Learning Objectives: The students	s will be able to						
1		ems, interpret the physical significance of solutions						
I	using Laplace Transforms and Inverse	Laplace transforms.						
2	Understand the basics of Matrix theory	y, Eigen values and Eigen vectors, its applications for						
4	finding solution of system of linear equ	uations						
3	Analyze the given set of experimental	data and fit suitable approximating curves.						
4	Learn to formulate and solve LPP usin	g optimization techniques.						

UNIT-I	
LAPLACE TRANSFORM	08 Hrs
Existence and uniqueness of Laplace Transform (LT), Transform of elementary	
functions, RoC. Properties of LT : Linearity, change of scale and first shifting.	
Transform of fulnction multiplied by t ⁿ , division by t, derivatives and integral. LT of	
periodic function, Heaviside unit step function, Unit impulse function. Heaviside	
shift (second shift) theorem.	
UNIT-II	
INVERSE LAPLACE TRANSFORM	08 Hrs
Definition, properties of inverse Laplace transform, evaluation using different	
methods. Convolution theorem, problems. Application to solve ordinary linear	
differential equations and simultaneous differential equations.	
UNIT-III	
LINEAR ALGEBRA	08 Hrs
Rank of matrices-rank of matrix by Echelon form, consistency of system of linear	
equations- homogeneous and non-homogeneous equations, Gauss elimination, Gauss	
Jordan, Gauss Seidel methods, Eigen values and Eigen vectors-properties, largest	
Eigen value by Power method.	
UNIT-IV	
STATISTICS	08 Hrs
Curve fitting by method of least squares, fitting of curves-linear, parabolic,	
exponential, power functions, correlation, regression analysis – problems.	
UNIT-V	
LINEAR PROGRAMMING	08 Hrs
Mathematical formulation of Linear Programming Problem, Graphical method,	
Simplex method and Big M method.	

Cou	Course Outcomes: After completing the course, the students will be able to					
1	Demonstrate the understanding of Laplace transforms and inverse Laplace transforms					
	significance of matrices, statistical measures and optimization techniques.					
2	Solve differential equations using Laplace transforms and system of equations using matrix					
	methods, find curve of best fit for observed data and, optimization problems using LPP.					
3	Apply acquired knowledge to construct frequency domain functions, use Least square					
	method and find correlation and regression and solve LPP using Graphical methods.					
4	Estimate definite integrals using Laplace transform, Eigen values, Eigen vectors and solve					

LPP using Simplex methods

Reference Books 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 40th Edition, 2007, ISBN: 81-7409-195-5. 2. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2008, ISBN: 13-978-07-063419-0; ISBN: 10-0-07-063419-X. 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9th Edition, 2007, ISBN: 978-81-265-3135-6. 4. N.P Bali & Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications, 7th Edition, 2010, ISBN: 978-81-7008-992-6.

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)									
Evaluation method	Quiz -1	Test -1	Quiz -2	Test -2	Quiz -3	Assignmen t	Total		
Course with Self-study	10	30	10	30	10	10	100		

Semester End Evaluation Theory (100)	
Part- –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of	
16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	
Both the questions should be of the same complexity in terms of COs and Bloom's	80
taxonomy level.	
Total	100

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Μ	-	-	-	-	-	-	-	L	-	L
CO2	Н	Μ	Μ	L	-	-	-	-	-	L	-	L
CO3	Н	Н	Μ	Μ	Μ	-	-	-	-	L	-	L
CO4	Н	Н	Н	Н	М	-	-	-	-	L	_	L

Low-1 Medium-2 High-3

S	emester: III	
Course Title: EN	GINEERING MAT	FERIALS
Course Code:	16EM32B	CIE Marks: 50
Hrs/Week: L:T:P:S:	2:0:0:0	SEE Marks: 50
Credits:	2	SEE Duration: 2 Hrs
Course Learning Objectives: The stud	lents will be able to	
1 Familiarize with atomic structure of n	netals, imperfections, o	diffusion mechanisms and theories

	of plastic deformation.
2	Understand concept of phase diagram and construct phase diagram of different alloy system.
3	Differentiate between steel and cast iron with the help of Iron carbon Diagram.
4	Demonstrate the skills to explain Time Temperature Transformation diagram and different types of heat treatment process.
5	Explain the composition, properties and application of ferrous and non-ferrous materials.
6	Explain the concept of corrosion in materials and their prevention.
7	The concept of selection of materials for automotive, aerospace, marine and domestic application.

UNIT-I	
Crystallography, defects in materials and deformation:	06 Hrs
Crystal structure - BCC, FCC and HCP structures - Unit cell - Crystallographic	
planes and directions, Miller indices. Crystal imperfections, point, line, planar	
and volume defects - Grain size, ASTM grain size number. Frank Reed source of	
dislocation, Elastic and Plastic deformation, Slip and Twinning, strain hardening	
and Bauschinger effect.	
UNIT-II	
Alloys and Phase Diagrams: Constitution of alloys - solid solutions -	04 Hrs
Substitutional and Interstitial.	
Phase diagrams - construction of isomorphus phase diagram, Lever rule, Iron-	
Iron carbide equilibrium diagram, different types of invariant reactions, slow	
cooling of steels.	
UNIT-III	
Heat Treatment: Full annealing, Stress relief annealing, Normalizing,	06 Hrs
Hardening and Tempering of steel. Isothermal transformation diagram of	
eutectoid steel - cooling curves imposed on I.T diagram, Critical cooling rate,	
Hardenability, Jomminy end quench test - austempering, martempering, case	
hardening, carbursing, nitriding, cyaniding. Flame and Induction hardening.	
UNIT-IV	
Ferrous and Non Ferrous Metals: Alloying of steel (Mn, Si, Cr, Mo, V, Ti and	04 Hrs
W) - stainless steels and tool steels - High Speed Low alloy (HSLA). Cast Iron-	
Gray, white, malleable, spheroidal, graphite cast iron.	
Composition, Properties and applications of Copper and Copper alloys - Brass	
and Bronze, Aluminium and Aluminium alloys, Titanium and Titanium alloys.	
UNIT-V	
Corrosion: Types of corrosion- Galvanic corrosion, Pitting corrosion, Erosion	04 Hrs
corrosion, Crevice corrosion; intergranular and transgranular corrosion, hydrogen	
cracking and embrittlement, corrosion prevention.	
Materials for Automotive, aerospace, marine and domestic applications.	

Cou	urse Outcomes: After completing the course, the students will be able to
1	Understand the concepts of crystal structure, microstructure and deformation. (L1-L2)
2	Construct phase diagram of alloy systems and Iron Carbon phase diagram. (L3)

3	Relevance of TTT diagram in design and control of heat treating process. (L4)
4	Understand ferrous and Non Ferrous materials and their alloys used for different
	application. (L5)

Ref	erence Books
1.	William F Smith., 'Material Science and Engineering', Tata McGraw Hill, 4 th Edition,
	2008, ISBN-(13 digits): 978-0-07-066717-4; ISBN-(10 digits): 0-07-066717-9
2.	Sidney H Avner., 'Introduction to Physical Metallurgy', Tata McGraw Hill, 1997,
	ISBN-(13 digits): 978-0-07-463006-8; ISBN-(10 digits): 0-07-463006-7
3.	William D. Callister, Jr., 'Materials Science and Engineering An Introduction', John
	Wiley and Sons, Inc., 6 th Edition, 2004, ISBN: 9812-53-052-5

Continuous Internal Evalu (Theory – 50 Mar	
Evaluation method	Course with Assignment/
	Self-study
Quiz -1	5
Test -1	20
Quiz -2	5
Test -2	20
Total	50

Semester End Evaluation	
Theory (50)	
Part- –A	10
Objective type questions	10
Part –B	
There should be five questions from five units. Each question should be for maximum	
of Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	40
Both the questions should be of the same complexity in terms of COs and Bloom's	
taxonomy level.	
Total	50

		What	To whom	Frequency of conduction	Max Marks	Evidence		tributio rse Outo	
t lent	CIE	Quiz Test		Two Two	20 30/20	Answer Scripts	80%		
Assessm	SEE	Semester End Examination	Students	Consisting of Part-A and Part-B	50	Answer Scripts	20%	100%	90%

CO PO Mapping	tiontionEnd of courseQuestionnaire Based on COs10%
---------------	---

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		Η	L				Μ					L
CO2	H	Η	L							L		
CO3	Μ	Η			Μ							
CO4		Η	L			Μ						L

Low-1 Medium-2 High-3

	PRINCIPLES OF FLUID MECHANICS AND THERMODYNAMICS					
Cou	rse Code: 16IM33	CIE Marks: 100				
Hrs	/Week: L:T:P:S: 3:0:0:4	SEE Marks: 100				
Cre	dits: 04	SEE Duration: 3 Hrs				
Cou	Course Learning Objectives: The students will be able to					
1	Recognize the various types of fluid flow problems encountered in practice.					
2	Apply the conservation of mass equation to balance the incoming and outgoing flow rates i					
4	a flow system.					
3	Develop the general energy balance applied to closed system.					
4	Apply the first law of thermodynamic to open and closed system.					
5	Apply the second law of thermodynamics to cycles & cyclic devices					

5 App	y the second	law of therm	odynamics t	o cycles &	& cyclic devices
-------	--------------	--------------	-------------	------------	------------------

UNIT-I	
Introduction, Basic Concepts & properties of fluid: Definition of fluid,	7 Hrs
Application areas of fluid mechanics, The No-slip condition, classification of fluids,	
Density & Specific gravity, vapor pressure and capitation, Compressibility &Bulk	
modulus, Viscosity, Surface tension & capillarity. Numerical problems based on	
fluid properties only.	
UNIT-II	
Mass, Bernoulli Equations: Conservation of mass, The Linear momentum equation,	9 Hrs
conservation of energy, Mass & volume flow rates, deforming control volumes, mass	
balance for steady flow process, Acceleration of fluid particle, Derivation of	
Bernoulli equation, Force balance across streamlines, unsteady compressible flow,	
Limitation on the use of Bernoulli equation, Hydraulic Grade Line and Energy grade	
Line, Application of Bernoulli equation, General energy equation.	
UNIT-III	
Introduction, Basic Concepts of Thermodynamics: Thermodynamics & Energy,	7 Hrs
Application and areas of thermodynamic, Systems and control volumes, Properties of	
a system, Density & Specific gravity, State & Equilibrium, process and cycles,	
temperature & the Zeroth law of thermodynamic. Temperature Scales, forms of	
energy, energy transfer by heat, energy transfer by work, Mechanical forms of work.	
UNIT-IV	

Energy on analysis of closed systems: Moving boundary work, energy balance for closed system, specific heats, Internal Energy, Enthalpy, & Specific heats of Ideal gases, Energy analysis of steady flow systems, and Energy analysis of Unsteady flow processes		
processes.		
UNIT-V		
The Second law of thermodynamics: Introduction to the second law, Thermal Energy Reservoirs, Heat engines, thermal efficiency, Kelvin Planck statement, Refrigerators & heat pumps, coefficient of performance, Clausius statement, equivalence of the two statements, Perpetual motion machines, Reversible & irreversible process, The Carnot cycle, The Carnot heat engine, Refrigerator and heat pump.	9 Hrs	

Coi	Course Outcomes: After completing the course, the students will be able to						
1	Apply the properties of fluid in engineering design.						
2	Apply the first law of thermodynamics on closed systems.						
3	Apply the second law of thermodynamics for control volumes undergoing steady state flow						
	processes.						

Ref	Reference Books						
1.	Yunus A Cencgal and John M Cimbala, Fluid mechanics – Fundamentals & Application,						
	Tata McGraw Hill publications, 2nd Edition, 2006, ISBN: 978-0-07-070034-5.						
2.	Yunus A Cencgal and Michael A. Boles, Thermodynamics - An Engineering Approach,						
	Tata McGraw Hill publications, 5th Edition, 2006, ISBN: 0072884959.						

In case of a course having only theory, the following minimum guidelines may be followed.

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)							
Evaluation method	Quiz -1	Test -1	Quiz -2	Test -2	Quiz -3	Self-study (EL)	Total
Course with Self-study	10	25	10	25	10	20	100

Semester End Evaluation Theory (100)	
Part- –A	20
Objective type questions	
Part –B	
There should be five questions from five units. Each question should be for maximum of	
16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's	
taxonomy level.	
Total	100

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1				н							
CO2				Н	Μ					L	
CO3			Μ	Н	Μ			М		L	
CO4		М		Н					L	L	

Low-1 Medium-2 High-3

	MECHANICS OF MATERIALS						
Cou	ourse Code: 16ME34 CIE Marks: 100 + 50 = 150						
Hrs/Week: L:T:P:S: 3:2:2:0 SEE Marks: 100 + 50 = 150		SEE Marks: 100 + 50 = 150					
Cree	dits: 05	SEE Duration: 3 Hrs (T) + 3 Hrs (P)					
Cou	rse Learning Objectives: The student	ts will be able to					
1	To understand mechanics of deformable bodies and apply them in analysis and design						
1	problems.						
2	To analyze a body subjected to two dimensional stress systems						
3	To understand the behavior of a structural member in flexure.& Torsion						
4	To evaluate the slope and deflection in beams subjected to loading.						
5	To study the stability of columns and struts.						
6	To predict the stress distribution in be	ams, pressure vessels, shafts, etc					

6	To predict the stress distribution in beams, pressure vessels, shafts, etc
---	--

PART A	
UNIT-I	
Review of stress, strain & Elastic Constants: Stress, Strain, relationship among	05 Hrs
elastic constants, Volumetric strain. (No questions to be set on these topics)	
Thermal stresses and strains (compound bars not included). Numerical problems.	
Two Dimensional Stress System: Introduction, Stress components on inclined	
planes, Principal Stresses, Principal planes, Mohr's circle of stress Numerical	
problems.	
UNIT-II	
Bending moment and shear force in beams : Introduction, Types of beams,	10 Hrs
Loads and Reactions, Shear forces and bending moments, Rate of loading, Sign	
conventions, Relationship between shear force and bending moments, Shear	
force and bending moment diagrams subjected to concentrated loads, uniform	
distributed load (UDL) for different types of beams.(UVL not included)	
Bending stress in beams: Introduction, Assumptions in simple bending theory,	
Derivation of Bernoulli's equation, Modulus of rupture, Section modulus,	
Flexural rigidity, Bending stress distribution in beams of various sections, Beam	
of uniform strength (No numerical on beam of uniform strength)	
Shear stresses in beams: Expression for horizontal shear stress in beam, Shear	
stress diagram for simple rectangular and I section and T sections only.	
Numerical problems.	

UNIT-III	
Deflection of determinate Beams: Introduction, Definitions of slope,	10 Hrs
Deflection, Elastic curve, Derivation of differential equation of flexure, Sign	
convention, Double integration method, Slope and deflection using Macaulay's	
method for prismatic beams and overhanging beams subjected to point loads,	
UDL and couple. Numerical problems.	
Thick and thin cylinders: Stresses in thin cylinders, Changes in dimensions of	
cylinder (diameter, length and volume), Thick cylinders subjected to internal and	
external pressures (Lame's equation), (Compound cylinders not included).	
UNIT-IV	
Torsion of shafts: Assumptions in theory of pure torsion, Torsion equations,	04 Hrs
Torsional rigidity and modulus of rupture, Power transmitted, Comparison of	
solid and hollow circular shafts. Numerical problems.	
UNIT-V	
Analysis of columns and struts: Introduction, Euler's theory on columns,	04 Hrs
Effective length, Slenderness ratio, Short and long columns, Radius of gyration,	
Buckling load, Assumptions, Derivation of Euler's Buckling load for different	
end conditions, Limitations of Euler's theory, Rankine's formula. Numerical	
problems.	

PART – B	
MECHANICS OF MATERIAL	S LABORATORY
Section I	12 Hrs
1.	Hardness Tests
(Brinell, Rockwell, Vicker)	
2. steel and HYSD (High Yield Strength Deformed) bar	Tension test on Mild
3. Mild Steel, HYSD, Cast iron.	Compression test of
4. Steel circular sections.	Torsion test on Mild
5. Wood Under two point loading.	Bending Test on
6. steel.	Shear Test on Mild
7. Steel (Charpy & Izod)	Impact test on Mild
8. on disc Tribometer.	Wear Test using Pin
Section – II (Non destructive testing)	4 Hrs
1. Test	Magnetic Particle
2.	Ultrasonic Test
3.	Dye Penetrant Test
4. inspection for metals	Eddy current

Course Outcomes: After completing the course, the students will be able to1Identify the different engineering materials, describe their properties and predict their

	behavior under different types of loading.
2	Compute the stresses, strains, moments, deflections, etc. and derive the expressions
	used from the fundamentals.
3	Choose materials, sizes and sections for various applications such as beams, shafts,
	pressure vessels, columns, etc. and justify their decision.
4	Design the testing methods and predict the mechanical properties by destructive and
	non-destructive approaches.

Ref	erence Books
1.	S.S. Bhavikatti, Strength of Materials, Vikas Publications House Pvt. Ltd. New Delhi,
	2012, ISBN 9788125927914
2.	Timoshenko and Young "Elements of Strength of Materials", Affliated East-West
	Press, 1976 Edition, ISBN-10: 0442085478, ISBN-13: 978-0442085476.
3.	F.P.Beer and R.Johnston, "Mechanics of Materials", McGraw-Hill Publishers, 2006
	ISBN 9780073529387
4.	S.Ramamrutham, R.Narayanan, "Strength of Materials", Dhanapath Rai Publishing
	Company, New Delhi, 2012, ISBN: 818743354X

	Continuous Inte	ernal Evaluation (CIE)		
(Theory – 10	00 Marks)	(Laboratory- 50 Marks))	Total
Evaluation method	Course with assignment	_		(150)
Quiz -1	10	Performance of the student in		
Test -1	30	the laboratory, every week	40	
Quiz -2	10			
Quiz -3	10	Test at the end of the semester	10	
Test -2	30		10	
Assignments	10]
Total	100	Total	50	150

Semester End Ev	aluatio	n (SEE)			
Theory (100 Marks)		Laboratory(50 M	Total (150)		
Part- –A Objective type questions	20	Experiment Conduction with	40		
Part –B There should be five questions from five units.		proper results Viva	10		
Each question should be for maximum of 16 Marks.					
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80				
The UNIT-2 and UNIT-3 should have an internal choice.					

Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.				
Total	100	Total	50	150

	What		What		To whom	Frequency of conductio n	Max Mark s	Evidence		tributio rse Outo	
		Quiz		Three	30	Answer					
sp	CI	Test		Two	60/50	Scripts	80				
Aetho	E	Assignment/Self -study		2 phases	10/20	Reports / Record	%				
nt N	nt N	Laboratory		Weekly	50	Books					
Direct Assessment Methods	S	Semester End Examination	Student s	Consisting of Part-A and Part-B	100	Answer	20	100 %	90 %		
Direct .	E E	Semester End Laboratory		End of every semester laboratory	50	Scripts	Scripts %				
Indirect Assessment methods	Tudirect Assessment Course End Survey		Student s	End of course		Questionnair e Based on COs		10%			

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	L	Η	Μ									
CO2			Η									
CO3		Μ			Н					L		
CO4			Н						Μ			

Low-1 Medium-2 High-3

	MEASUREMENTS AND METROLOGY						
Cou	rse Code: 16IM35	CIE Marks: 100 + 50					
Hrs/	Week: L:T:P:S: 3:0:2:4	SEE Marks: 100 + 50					
Cree	Credits: 05 SEE Duration: 03 + 03 Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	1 Explain the concepts of measurement and gauging instruments.						
2	Define the relevance of various m	easurement systems & standards with regards to					

3 Apply the principles of metrology and measurements in manufacturing industr	ies.
UNIT-I	
CONCEPT OF MEASUREMENTS General concept – Generalised measurement system-Units and standards- measuring instruments- sensitivity, readability, range of accuracy, precision-static and dynamic response-repeatability-systematic and random errors-correction, calibration, interchange ability.	07 Hrs
UNIT-II	
LINEAR AND ANGULAR MEASUREMENTS Definition of metrology-Linear measuring instruments: Vernier, micrometer, interval measurement, Slip gauges and classification, interferometery, optical flats, limit gauges- Comparators: Mechanical, pneumatic and electrical types, applications. Angular measurements:-Sine bar, optical bevel protractor, angle Decker – Taper measurements,	06 Hrs
UNIT-III	
FORM MEASUREMENTS Measurement of screw threads-Thread gauges, floating carriage micrometer- measurement of gears-tooth thickness-constant chord and base tangent method- Gleason gear testing machine – radius measurements-surface finish, straightness, flatness and roundness measurements.	07 Hrs
UNIT-IV	
ADVANCES IN METROLOGY Precision instruments based on laser-Principles- laser interferometer-application in linear, angular measurements and machine tool metrology Coordinate measuring machine (CMM)- Constructional features – types, applications – digital devices- computer aided inspection,3D Metrology. Introduction to MEMS Sensors and Nano Sensors, Schematic of the design of sensor, application.	10 Hrs
UNIT-V	
MEASUREMENT OF POWER, FLOW & TEMPERATURE RELATED PROPERTIES Force, torque, power :-mechanical, pneumatic, hydraulic and electrical type- Temperature: bimetallic strip, pressure thermometers, thermocouples, electrical resistance thermister.	06 Hrs

MEASUREMENTS AND METROLOGY LABORATORY

1. Measurement of angle using Sine Bar and Sine centre

practical applications.

- 2. Measurement of Angle using Universal Bevel Protractor
- **3.** Measurement of straightness using Autocollimator/Laser interferometry. Gage R & R using MiniTab.

- 4. Determination of modulus of Elasticity of a mild steel specimen using strain gauge (Cantilever Beam)
- 5. Calibration of Pressure Transducer
- 6. Calibration of Thermocouple. Gage R & R using MiniTab.
- 7. Calibration of Linear Variable Differential Transformer (LVDT)
- 8. Programming and Simulation of Bottle-filling process using PLC.
- 9. Simulate level measurement and indication of emergency shutdown feature using Lab VIEW
- 10. Programming and Simulation of Automatic Material Sorting by Conveyor using PLC.
- 11. Measurement of various parameters of machine tool components using VMM
- 12. Demonstration on SCM/XRD/FTRI/SOM

Course Outcomes: After completing the course, the students will be able to

	\mathbf{r}						
1	Discuss the principles and practices of metrology in manufacturing environment and						
	analyze uncertainty in an appropriate manner.						
2	Describe the operating principles of range of widely used instrumentation techniques and						
	illustrate how to use them in the design of measurement systems.						

- 3 Compare the production process, the product function and the product design, and to select appropriate measurement quantities and tools for these purposes.
- 4 Evaluate and respond to the need for rigorous and formal metrology concepts in designing and using measurement systems

Reference Books

- Jain R.K., Engineering Metrology, Khanna Publishers, 1994,17th edition, ISBN: 71-7409-1. 024-x
- Beckwith T.G, and N. Lewis Buck, Mechanical Measurements, Addison Wesley, 1991,5th 2. edition, ISBN: 81-7808-055-9
- A.K.Sawhney, Electrical and electronic measurements and instrumentation, Dhanpat Rai and 3. Sons,18th Edition,2008,ISBN 8177000160

Stephen Beeby, MEMS Mechanical sensors, Artech House, 2004, ISBN 1-58053-536-4 4.

Continuous Internal Evaluation (CIE)								
(Theory – 10	00 Marks)	(Laboratory- 50 Marks))	Total				
Evaluation method	Course with assignment			(150)				
Quiz -1	10	Performance of the student in						
Test -1	25	- the laboratory, every week	40					
Quiz -2	10	the laboratory, every week						
Test -2	25	- Test at the end of the semester	10					
Quiz -3	10	Test at the end of the semester						
Self Study	20							
Total	100	Total	50	150				

Semester End Evaluation (SEE)							
Theory (100 Marks)		Laboratory(50 Marks)	Total (150)				
Part- –A	20	Experiment					

Objective type questions		Conduction with	40	
Part –B		proper results		
There should be five questions from five units.		Viva	10	
Each question should be for maximum of 16				
Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not	80			
have any choice.				
The UNIT-2 and UNIT-3 should have an internal choice. Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.				
Total	100	Total	50	150

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	L										
CO2		L	Μ								L	
CO3		Μ		Η		L						
CO4	L	L	L									

Low-1 Medium-2 High-3

MANUFACTURING PROCESSES						
Cou	rse Code: 16IM36	CIE Marks: 100 + 50				
Hrs/	Week: L:T:P:S: 3:0:2:4	SEE Marks: 100 + 50				
Credits: 05 SEE Duration: 03 + 03						
Course Learning Objectives: The students will be able to						
1	Develop the concepts related to forming & welding processes and practices.					
2	Explain the methodologies and stages involved in primary manufacturing processes.					
3	Define cutting parameters influencing metal cutting.					
4	Explain the methodologies and stages involved in secondary manufacturing processes					

UNIT-I

Introduction: - Production and assembly processes, classification of production
processes, selection of a process for production. Recyclability issues, Maintenance of
various equipments.07 HrsMetal Casting Process: Casting terminology, sand mould making procedure.
Pattern: Pattern allowances, core prints, pattern materials, types of patterns, pattern
color code.07 HrsMolding Materials & Core Making: Molding sand composition, testing sand
properties, sand preparation, molding sand properties, molding machines, types of
cores, core prints, chaplets, metalostatic forces.07 HrsGating system Design: Elements of gating system, gates, pouring time, choke area,07 Hrs

sprue, gating ratios, Caine's method for riser design.

UNIT-II					
Metal forming processes: Hot working & cold working, principle of rolling & applications, forging operations	07 Hrs				
Metal fabrication Processes: classification, principles of resistance welding, resistance spot welding, resistance seam welding, projection welding, flash welding, Defects in welding.					
UNIT-III					
Theory of metal cutting: Single point tool nomenclature, geometry, orthogonal & oblique cutting, mechanism of chip formation, types of chips, Merchants analysis, shear angle relationship. Tool wear & tool failure effects of cutting parameters, Tool life criteria, Taylor's tool life equation, problems on Merchants analysis & tool life evaluation	06 Hrs				
Cutting tool materials: Desired properties, types of cutting tool materials- HSS carbides, coated carbides, ceramics. Cutting fluids- properties, types & selection. Machinability, factors affecting machinability.					
UNIT-IV					
Production lathes: Capstan & turret lathes-constructional features, tool & work holding devices, tool layout.	07 Hrs				
Drilling machines: Classification, constructional features. Types of drill, drill bit nomenclature, geometry of twist drill. Drilling & related operations. Problems on calculating the machining time.					
UNIT-V					
Milling machines: Classification, constructional features. Milling cutters & nomenclatures. Milling operations - up milling & down milling concepts. Indexing: Purpose of indexing, indexing methods. Problems on indexing. Grinding machines: Types of Abrasives, Bonding process, classification, constructional features of surface, cylindrical & centre less grinding machines & operations.	07 Hrs				
MANUFACTURING PROCESS LABORATORY					
Part – I - Experiments on Foundry & Sand testing					

- 1. Testing of Moulding sand and Core sand Preparation of specimen and conduction of the following tests:
 - a) Compression/ Shear /Tensile tests
 - b) Permeability test
 - c) Grain fineness test
 - d) Clay content test
- 2. Preparation of moulds two box method: using split pattern. Match plate pattern & Cores.

Part – II - Experiments on secondary manufacturing processes 1. Preparation of models involving the following lathe operations: Plain Turning, Taper Turning, Step Turning, Thread Cutting, Facing, Knurling, and Eccentric Turning. 2. Cutting of gear teeth using milling machine 3. Demonstration of surface grinding. 4. Demonstration of CNC turning machine.

Course Outcomes: After completing the course, the students will be able to

- 1 Explain the basic principles and methodology of various manufacturing processes that are used for the production of mechanical parts and products.
- 2 Compare and contrast the advantages and limitations of different manufacturing processes
- 3 Solve the problems on processing time and economics of processing of material with respect to a manufacturing process.
- 4 Apply the design concept of various manufacturing processes when a specific product has to be manufactured.

Reference Books

- 1. P.N. Rao, Manufacturing Technology: Foundry Forming and Welding, TMH, 2nd Edition, 1998, ISBN: 0-07-463180-2.
- **2.** J.P.Kaushish, Manufacturing Processes, PHI Learning Pvt.Ltd, 2nd Edition, 2010, ISBN: 978-81-203-4082-4
- **3.** G. Boothroyd, Fundamentals of Metal Machining & Machine Tools, Mc Graw Hill, 2004, ISBN: 978-1-5-7442659 -3.
- 4. HMT, Production Technology, Tata McGraw Hill, 2004, ISBN: 0-07-096443-2. Continuous Internal Evaluation (CIE)

(Theory – 10	0 Marks)	(Laboratory- 50 Marks)	Total (150)	
Evaluation method	Course with assignment			
Quiz -1	10	Derformence of the student in		
Test -1	25	- Performance of the student in	40	
Quiz -2	10	the laboratory, every week		
Test -2	25	Test states and after some star	10	
Quiz -3	10	Test at the end of the semester	10	
Self Study	20			1
Total	100	Total	50	150

Semester End Evaluation (SEE)								
Theory (100 Marks)	Laboratory(50 M	Total (150)						
Part- –A	20	Experiment						
Objective type questions		Conduction with	40					
Part –B		proper results						
There should be five questions from five units.		Viva	10					
Each question should be for maximum of 16								
Marks.								
The UNIT-1, UNIT-4 and UNIT-5 should not	80							
have any choice.								
The UNIT-2 and UNIT-3 should have an								
internal choice.								
Both the questions should be of the same								
complexity in terms of COs and Bloom's								
taxonomy level.								

Total	100	Tatal	50	150
		Total	50	

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Μ											
CO2		Μ										L
CO3		Н	L									
CO4		Μ	Н	L	L							L

Low-1 Medium-2 High-3

	BRIDGE COURSE MATHEMATICS						
Cou	rse Code: 16DMA37	CIE Marks: 100					
Hrs/Week: L:T:P:S: 2:0:0:0 SEE Marks: 100							
Aud	it Course	SEE Duration: 3Hrs					
Course Learning Objectives: The students will be able to							
1	Acquire knowledge of multivariate functions, types of derivatives involved with these						
1	functions, Jacobian as transformation	11					
	Enhance the knowledge level to visualize integrals in higher dimensional geometry,						
2	possible representation and evaluation	n of geometrical and physical quantities in terms of					
	multiple integrals.						
3	Recognize and model differential equations, apply analytic techniques to compute solut						
5	for engineering problems.						
4	Acquire concepts of vector function, v	vector field, differential calculus of vector functions					
4	⁴ in Cartesian coordinates.						
5	Finding the approximate solutions usi	ng numerical methods, for problems which do not					
3	have analytical solutions.						

UNIT-I	
DIFFERENTIAL CALCULUS	06 Hrs
Taylor and Maclaurin's series for function of single variable.	
Introduction-partial derivatives, simple problems. Total derivative, Composite	
functions, Jacobians- simple problems.	
UNIT-II	
MULTIPLE INTEGRALS	06 Hrs
Evaluation of double and triple integrals – direct problems, change of order in double	
integral, change of variables to polar, cylindrical and spherical coordinate systems.	
UNIT-III	
DIFFERENTIAL EQUATIONS	06 Hrs
Higher order linear differential equations with constant coefficients, Complementary	
function and Particular integral, problems. Equations with variable coefficients –	
Cauchy and Legendre differential equations, problems.	
UNIT-IV	
VECTOR DIFFERENTIATION	06 Hrs
Introduction, simple problems in terms of velocity and acceleration. Concepts of	
Gradient, Divergence- solenoidal vector function, Curl- irrotational vector function	

and Laplacian, simple problems.	
UNIT-V	
NUMERICAL METHODS	06 Hrs
Algebraic and transcendental equations – Regula-Falsi method, Newton-Raphson method.	
Ordinary Differential Equations – Taylor's, modified Euler's and 4 th order Runge-	
Kutta methods.	
Numerical Integration – Simpson's $1/3^{rd}$, $3/8^{th}$ and Weddle's rules.	

Course Outcomes: After completing the course, the students will be able to1Understand the significance of fundamental concepts of Mathematics in various

1	Understand the significance of fundamental concepts of Mathematics in various			
	Engineering problems.			
2	Interpret the concept of differentiation, integration and differential equations in Engineering			
	and real life problems			
3	Apply effectively appropriate quantitative tools and logical modes of thinking to analyze for			
	solving Engineering problems.			
4	Justify the application of various Mathematical models and broaden the problem solving			
	skills in a wide range of intellectual domains.			
D				

Reference Books		
1.		
2.		
3.		
4.		