

R.V. College of Engineering, Bengaluru – 59

(Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi)

Department of Mechanical Engineering

Vision:

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

Mission:

- Imparting knowledge in basic and applied areas of Mechanical Engineering.
- Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- Facilitating faculty development through continuous improvement programs.
- Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs

Program Educational Objectives (PEO)

The Graduates of M. Tech. in Machine Design Program will be prepared for:

- **PEO1** Practicing design of engineering systems through the application of the fundamental knowledge and skills of Mechanical Engineering.
- **PEO2** Enhancing their skills through training, independent inquiry, and professional development.
- **PEO3** Working independently as well as collaboratively, while demonstrating the professional and ethical responsibilities of the engineering profession.

Program Outcomes (PO)

M. Tech. in Machine Design graduates will be able to:

- **PO1:** Apply the knowledge of Mathematics and Engineering for machine design
- **PO2:** Identify and analyze the engineering challenges / problems regarding human needs in daily life about machines and systems.
- **PO3:** Design and develop engineering solutions for global progress, productivity and economic development.
- **PO4:** Use of modern tools and techniques for modeling and analysis of complex engineering systems.
- **PO5:** Understand the impact of Machine Design engineering on all aspects of environment and society and to demonstrate the knowledge and need for sustainable development.
- **PO6:** Work as professionals in accordance with the norms of Machine Design engineering practices and commit to societal, ethical and professional responsibilities.
- **PO7:** Apply professional, ethical, legal, security and social issues in the design systems.
- **PO8:** Demonstrate design principles to work as team member and / or leader in multidisciplinary areas of engineering
- **PO9:** Communicate effectively through written and oral modes.
- **PO10:** Understand and apply project management techniques, tools and practices to plan manage and complete an Engineering Design project.
- PO11: Engage in independent and lifelong learning by pursuing higher studies and training.

Program Specific Criteria (PSC) as per American Society of Mechanical Engineers

The curriculum is designed to enable the students to (a) apply principles of engineering design, analysis, selection of materials and manufacturing processes using modern tools and techniques to new products; (b) be proficient in costing, quality assessment and its life cycle management; (c) work in teams, communicate effectively, demonstrate concern for environment and sustainability of products and processes.

The faculty members of the program possess in-depth understanding and expertise in their areas of specialization with a commitment to periodically update their knowledge in respective domains.

Program Specific Outcomes (PSO)

- M. Tech. in Machine Design graduates will be able to:
- **PSO 1**: Design Mechanical systems using interrelationship among force, stress, vibration and failure analysis.
- **PSO 2**: Develop advanced analysis tools for evaluating performance of mechanical systems to enhance the capability of the designer.

	FIRST SEMESTER							
SI.			D G		CREDIT	ALLOCAT	ION	Total
No Course Code		Course Title	BoS	Lecture L	Tutorial T	Practical P	Self-Study S	Credits
1	16MEM11P	Project Management	IM	3	1	0	0	4
2	16MAT12C	Advanced Mathematics	MA	4	0	0	0	4
3	16MMD13	Advanced Finite Element Methods (Theory & Practice)	ME	4	0	1	0	5
4	16MMD14	Advanced Theory of Vibrations	ME	4	0	0	1	5
5	16MMD15X	Elective 1	ME	4	0	0	0	4
6	16HSS16	Professional Skill Development	HSS	0	0	2	0	2
		Total		19	1	3	1	24

		Elective 1	
16MMD151	Advanced Solid Mechanics	16MMD152	Acoustics and Noise Control

	SECOND SEMESTER							
CI	C				CREDIT	ALLOCA	TION	T-4-1
SI. No	Course	Course Title	BoS	Lecture	Tutorial	Practical	Self-Study	1 otal Credits
110.	Coue			L	Т	Р	S	Creuits
1.	16MEM21R	Research Methodology	IM	3	1	0	0	4
2 2	16MMD22	Theory of Mechanisms	ME	1	4 0	1	0	5
۷.		(Theory & Practice)		4	0	1	0	5
3.	16MMD23X	Elective 2	ME	4	0	0	0	4
4.	16MMD24X	Elective 3	ME	4	0	0	0	4
5.	16MMD25X	Elective 4	ME	4	0	0	0	4
6.	16MMD26	Minor Project	ME	0	0	5	0	5
		Total		19	1	6	0	26

Elective 2						
16MMD231	Tribology and Bearing Design	16MMD232/16MTE232	Design of Hydraulics and Pneumatics			
Elective 3						
16MMD241	Theory of Plates and Shells	16MMD242/16MCM242	Industrial Robotics			
	Elective 4					
16MMD251	Selection of Materials and Processes	16MMD252	Computer Applications in Design			

	THIRD SEMESTER							
CI					CREDIT	ALLOCATI	ON	
SI. No	Course Code	Course Title	BoS	Lecture	Tutorial	Practical	Self-Study	Credits
110.				L	Т	Р	S	
1	16MMD31	Advanced Machine Design	ME	1	0	1	0	5
		(Theory & Practice)	IVIL	4	0	1	0	5
2	16MMD32X	Elective 5	ME	4	0	0	0	4
3	16MMD33X	Elective 6	ME	4	0	0	0	4
4	16MMD34X	Elective 7	ME	4	0	0	0	4
5	16MMD35	Internship/Industrial Training	ME	0	0	3	0	3
6	16MMD36	Technical Seminar	ME	0	0	2	0	2
		Total		16	0	6	0	22

Elective 5						
16MMD321	Fracture Mechanics	16MMD322	Computational Fluid Dynamics			
Elective 6						
16MMD331	Mechatronics system design	16MMD332	Rotor Dynamics			
	Elective 7					
16MMD341	Design of Smart Structures	16MMD342	Design of Pressure Vessels			

	FOURTH SEMESTER							
C1				CREDIT ALLOCATION				
51. No	Course Code	Course Title	BoS	Lecture	Tutorial	Practical	Self-Study	Credits
110				L	Т	Р	S	
1	16MMD41	Major Project	ME	0	0	26	0	26
2	16MMD42	Seminar	ME	0	0	2	0	2
		Total		0	0	28	0	28

		PROJE	CT MANAGI	EMENT		
Course Code	:	16 MEM11P		CIE Marks	:	100
Hrs/Week	:	L: T: P: S	3:2:0:0	SEE Marks	:	100
Credits	:	4		SEE Duration	:	3 Hours
Course Learnin	ng	Objectives:				
Students are abl	e to)				
1. Understand	the	principles and compone	ents of project	management.		
2. Appreciate t	he	integrated approach to n	nanaging proje	ects.		
3. Elaborate th	e p	rocesses of managing pr	oject cost and	project procurements.		
4. Apply the pr	roje	ect management tools an	d techniques.			
Introductions I	2	Uni	$ \mathbf{t} - \mathbf{l} $	a amona nantfalia man		7 Hours
Introduction: I	ro	ject, Project management	nt, relationshi	os among portiolio mar	lage	ement, program
nroject manager	ma	nt operations managem	ganizational p	izational strategy busi		value role of
the project manager	ane	r project management h	ody of knowle	nzational suategy, bush	1055	s value, lole of
	ige	Uni	$t - \mathbf{H}$	uge.		8 Hours
Generation and	d S	Screening of Project Id	leas: Generati	on of ideas, monitoring	g th	e environment.
corporate apprai	isal	l, scouting for project id	leas, prelimina	ry screening, project ra	ting	index, sources
of positive net p	res	ent value. Project costin	g,		U	
Project Scope I	Ma	nagement: Project scop	e managemen	t, collect requirements d	lefir	ne scope, create
WBS, validate s	co	pe, control scope.				
Organizational	i	nfluences & Project	life cycle:	Organizational influe	ence	es on project
management, pr	oje	ect state holders & gover	nance, project	team, project life cycle.		1
		Unit	<u> </u>			7 Hours
Project Integra	atio	on Management: Deve	clop project cl	harter, develop project	mar	nagement plan,
direct & manage	e p	roject work, monitor &	control projec	t work, perform integral	ted (change control,
close project or	pn	ase.	ality managar	nant norform quality	0.001	rance control
auality	y .	management. I fan yu	anty manager	nent, perform quanty	assi	france, control
quality.		Unit	- IV			7 Hours
Project Risk M	an	agement: Plan risk man	agement, iden	tify risks, perform quality	tativ	ve risk analysis.
perform quantita	ativ	e risk analysis, plan risk	resources, co	ntrol risk.		je c,
Project Schedu	ıliı	ng: Project implementa	tion schedulin	g, Effective time mana	ager	ment, Different
scheduling tech	niq	ues, Resources allocatio	n method, PLN	A concepts. Project life	cycl	e costing.
		Un	it-V			7 Hours
Tools & Tech	niq	ues of Project Manag	gement: Bar	(GANTT) chart, bar c	hart	for combined
activities, logic	d	iagrams and networks	, Project eva	luation and review To	echr	niques (PERT)
Planning, Comp	ute	erized project manageme	ent.			
Syllabus includ	les	tutorials for two hour	per week:			
• Case di	 Case discussions on project management 					
Numeric	Numerical problems on PERT & CPM					
Compute	eriz	zed project management	exercises usin	g M S Project Software		
Course Outcon	nes	:				
After going thro	ug	h this course the student	will be able to)		
CO1: Explain	the	process of project ma	anagement and	l its application in del	live	ring successful
projects.						
CO2: Illustrate	oro	ject management proces	s groups for va	arious project / function	al ap	oplications.

CO3: Appraise various knowledge areas in the project management framework. CO4: Develop project plans and apply techniques to monitor, review and evaluate progress for different types of projects.

Reference Books:

- 1. Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK Guide)", 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Harold Kerzner, "Project Management A System approach to Planning Scheduling & Controlling", John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
- 3. Prasanna Chandra, "Project Planning Analysis Selection Financing Implementation & Review", Tata McGraw Hill Publication, 7th Edition, 2010, ISBN 0-07-007793-2.
- Rory Burke, "Project Management Planning and Controlling Techniques", John Wiley & Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	М	Μ		М	Н	Н	Н		Н	
CO2		М			М	Н	Н	Н	L	Н	
CO3		М	Н		М	Н	Н	Н	Н	Н	М
CO4	Μ	Н	Μ	L	Н	Н	Н	Н		Н	Н

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1		L
CO2	L	
CO3	L	L
CO4		М

		ADV	ANCED MATHEM	IATICS		
Course Code	:	16MAT12C		CIE Marks	:	100
Hrs/Week	:	L-T-P-S:	4-0-0-0	SEE Marks	:	100
Credits	:	4		SEE Duration	:	3 hrs
Course Learn	ing	Objectives (CLO):			
The students sl	nall	be able to:	C 11			.1
1. Identify	/at	to and active linear	es of linear systems the	hrough matrix algebra and	use	the same
2 Recourt	ula	and apply the exist	system of equations.	thods for solving initial va	ا مىرا	boundary
value n	roh	e and apply the existence of the left of t	nd numerically.	lindus for solving initial va	iuc, i	Joundar y
3. Analyz	e c	oncepts of vectors a	and tensors used in er	ngineering applications.		
4. Use pr	oba	bility concepts to	recognize random pl	hysical phenomena and in	mple	ment the
proper	mo	del for predictions	in mechanical engine	ering systems.	_	
			Unit – I			10 Hrs
System of Equ	iati	ions and Eigen val	ue problems			
Linear system	s: (Gauss elimination	method, LU decomp	position method, Matrix i	nver	sion, Ill-
conditioned sy	'ste	ms. Eigen values	and eigen vectors, J	acobi method for symme	tric	matrices,
Power method	, In	verse Power metho	d, Nonlinear algebrai	ic equations: Newton-Rapl	nson	method.
			Unit – II			10 Hrs
Numerical Int	eg	ration and Numer	ical Solutions of Ord	dinary Differential Equa	tions	
Newton-Cotes	m	ethods, Romberg	integration, Gaussi	an quadrature. Runge-K	utta	method,
Predictor-corre	ecto	or methods, Problen	ns with engineering a	pplications.		
			Unit – III			09 Hrs
Vector and Te	nc	or Analysis				•••
Introduction to) V(ector analysis. Ten	sor analysis: suffix i	notation, algebra of tensor	rs, si	vmmetric
and skew symi	net	ric tensors. Calculu	is of tensor: scalar. ve	ector and tensor functions.	grad	dient of a
scalar and vect	or,	divergence and cur	l of a vector and tens	sor.	0	
			Unit – IV			09 Hrs
Numerical So	luti	ions of Partial Diff	ferential Equations			
Finite differen	ice	method for ellipt	ic, parabolic, hyper	bolic equations, Solution	of	Laplace,
Poisson and w	ave	e equations. Stabili	ty theory: Von-Neur	mann stability. Dirichlet a	ind l	Neumann
boundary cond	itic	ons for the above pa	rtial differential equa	ations.		10 11
			Unit – V			10 Hrs
Probability	1	1 1 .		11	Б	1 1 11.
Random varial	bles	s, discrete and cont	inuous random varia	ibles, expectation, variance	e. Pr	obability
distribution: E	sin(⁺	omial, Poisson an	d normal. Paramete	er estimation, lesting of	r ny	potnesis,
Experiential le	ı. orn	ing. MATI AB sof	tware tool to solve a	hove said methods		
	am	ing. WATLAD SOI		bove salu methous		
Course Outco	me	es:				
After going the	rou	gh this course the s	tudent will be able to	:		
CO1 : Identify methods	an s ar	nd interpret the fun	damental concepts o	of vectors, tensors, matrice	es, n	umerical
CO2: Apply t solve di	he ffer	knowledge and sk ent types of computa	ills of statistical and tional problems.	numerical techniques to	exar	nine and
CO3: Analyz	e f	he physical proble	em to establish mat	hematical model and use	e an	propriate

method to solve problems and optimize the solution.

CO4: Distinguish the overall mathematical knowledge gained to demonstrate and analyze the problems arising in practical situations.

Ref	Cerence Books:
1.	M K Jain, S. R. K. Iyengar, R. K. Jain, "Numerical methods for scientific and engineering
	2001-2.
2.	K. Sankara Rao, "Partial Differential Equations", Prentice-hall of India, 3 rd edition, 2012, ISBN: 978-81-203-3217-1.
3.	Seymour Lipschutz, Marc Lars Lipson, "Theory and Problems of Probability", Schaum's Outline Series, 2 nd Edition, ISBN: 0-07-118356-6.
4.	B. S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2015, ISBN: 978-81-7409-195-5.

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	-	-	L	L	-	-	-	-	-	L
CO2	-	L	L	-	-	-	-	-	-	-	-
CO3	Μ	Н	Μ	Μ	-	-	-	-	-	-	-
CO4	L	-	L	-	L	-	-	L	-	_	М

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	L	М
CO2	М	-
CO3	Н	L
CO4	-	М

ADVANCED FINITE ELEMENT METHODS (Theory & Practice)										
Course Code	:	16MMD13		CIE Marks	:	100 + 50				
Hrs/Week	:	L:T:P:S	4:0:1:0	SEE Marks	:	100 + 50				
Credits	•	5		SEE Duration	•	3 + 3 Hours				
Course Learni	ng	Objectives (CL	0):							
Student are able	e to									
 Identify 	ma	thematical mode	el for solution of commo	n engineering probl	em	18.				
> Formula	ite :	simple problems	into finite elements.							
Solve st	ruc	tural, thermal, fl	uid flow problems.	leve en ein e enin e med	1 1	main Calid				
→ Use pro	ics	fluid mechanics	and heat transfer	ive engineering pro	bie	ms in Sona				
Derive e	eler	nent matrix equa	tion by different method	ls by applying basic	la	ws in mechanics				
and inte	gra	tion by parts.	5	5 11 5 6						
			Unit – I			12Hrs				
Finite Elemen	nt	Formulation o	f Boundary Value:	Solution to engin	eei	ring problems –				
mathematical n	noc	leling – discrete	e and continuum model	ing – need for nu	me	erical methods of				
solution – rele	van	ce and scope of	f finite element method	ls – engineering a	ppl	lications of FEA.				
Weighted resid	lual	methods –gene	eral weighted residual	statement – weak	fc	ormulation of the				
weighted residu	ai : fur	statement –comp	erisons – piecewise contractions	and stationary total	ns-	example of a bar				
finite element -functional and differential forms - principle of stationary total potential - Rayleigh										
Ritz method –	nie	Ritz method – piecewise continuous trial functions – finite element method – application to bar								
Ritz method – element	pie	cewise continuo	us trial functions – finit	te element method	- ;	application to bar				
Ritz method – element	pie	cewise continuo	Unit – II	te element method	- :	application to bar				
Ritz method – element	pie	Finite Element	Unit – II Analysis: General form	te element method	- : or 1	application to bar 10 Hrs -D applications –				
Ritz method – element One Dimension generic form o	nal	Finite Element	Unit – II Analysis: General form equations – linear bar	te element method of total potential fo element – quadra	or 1	application to bar 10 Hrs -D applications – element –nodal				
Ritz method – element One Dimension generic form of approximation methods	nal	Finite Element finite element of	Unit – II Analysis: General form equations – linear bar shape functions – eler	of total potential for element – quadra ment matrices and	or 1 atic	application to bar 10 Hrs -D applications – element –nodal ectors – example				
One Dimension generic form of approximation problems – ext	nal of ensilob	Finite Element finite element of development of sion to plane true	Unit – II Analysis: General form equations – linear bar shape functions – eler uss– development of eler	of total potential for element – quadra ment matrices and ement equations – element – nodal an	or 1 atic ass	application to bar 10 Hrs -D applications – element –nodal ectors – example sembly – element symmetric – shape				
Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element	nal of lob	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo	Unit – II Analysis: General form equations – linear bar shape functions – eler iss– development of eler olution methods –beam of ectors – assembly – solu	of total potential for element – quadra ment matrices and ement equations – element – nodal ap tion – example prob	Dr 1 atic ve ass pro	application to bar 10 Hrs -D applications – element –nodal ectors – example sembly – element oximation – shape ms.				
Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element	nal of lob ner	Finite Element finite element of development of sion to plane tru al equations – so it matrices and vo	Unit – II Analysis: General form equations – linear bar shape functions – eler iss– development of eler olution methods –beam ectors – assembly – solu Unit – III	te element method of total potential fo element – quadra ment matrices and ement equations – element – nodal ap tion – example prof	or 1 atic ass pro	application to bar 10 Hrs -D applications – element –nodal ectors – example sembly – element oximation – shape ms. 12 Hrs				
Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element	nal of lob nem	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo	Unit – II Analysis: General form equations – linear bar shape functions – eler iss– development of ele olution methods –beam ectors – assembly – solu Unit – III t Analysis: Introduction	te element method of total potential fo element – quadra ment matrices and ement equations – element – nodal ap tion – example prob	or 1 atic ve ass pro	application to bar 10 Hrs -D applications – element –nodal ectors – example sembly – element oximation – shape ms. 12 Hrs eometry and field				
Ninte element – Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 not	nal of ensilob ner	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo	Unit – II Analysis: General form equations – linear bar shape functions – eler uss– development of eler olution methods –beam ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang	te element method of total potential fo element – quadra ment matrices and ement equations – element – nodal ap tion – example prot	f g	application to bar 10 Hrs -D applications – element –nodal ectors – example sembly – element oximation – shape ms. 12 Hrs eometry and field r order elements –				
Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 nod generalized coord	nal of lob ner	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo I Finite Elemen triangular eleme nates approach t	Unit – II Analysis: General form equations – linear bar shape functions – eler iss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations	te element method of total potential fo element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation o gular elements – hig – difficulties – nat	or 1 atic ve ass pro oler f g	application to bar 10 Hrs 1-D applications – element –nodal ectors – example sembly – element oximation – shape ms. 12 Hrs eometry and field r order elements – al coordinates and				
Ninte element – Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 nod generalized coor coordinate tran atructural mach	nal of lob men jona led ordi sfo	Finite Element finite element of development of sion to plane tru al equations – so it matrices and vo l Finite Elemen triangular eleme nates approach t rmations – trian	Unit – II Analysis: General form equations – linear bar shape functions – eler uss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations agular and quadrilateral p. 2 dimensions – alastic	te element method of total potential fo element – quadra ment matrices and ement equations – element – nodal ap tion – example prot – approximation o gular elements – hig – difficulties – nat elements – iso-pa	f g her	application to bar 10 Hrs -D applications – element –nodal ectors – example bembly – element oximation – shape ms. 12 Hrs eometry and field r order elements – al coordinates and netric elements – strain relations				
Ninte element Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 noor generalized coor coordinate trans structural mech plane problems	nal of of lob men ona led ordi sfo ani	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo I Finite Elemen triangular elemen nates approach t rmations – trian cs applications i	Unit – II Analysis: General form equations – linear bar shape functions – eler iss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations agular and quadrilateral in 2-dimensions – assem	te element method of total potential fo element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation o gular elements – hig – difficulties – nat elements – iso-pa city equations – stro-	f g her aran	application to bar 10 Hrs 1-D applications – element –nodal ectors – example sembly – element oximation – shape ms. 12 Hrs eometry and field r order elements – il coordinates and netric elements – strain relations – rature formulae				
Ninte element – Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 nod generalized coor coordinate transtructural mech plane problems	nal of ensiled ordi sfo ani of ona	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo I Finite Elemen triangular elemen nates approach t rmations – trian cs applications i f elasticity – ele natural coordina	Unit – II Analysis: General form equations – linear bar shape functions – eler uss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations agular and quadrilateral in 2-dimensions – elastic ment equations – assem ates – Gaussian quadratu	te element method of total potential fo element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation o gular elements – hig – difficulties – nat elements – iso-pa city equations – stra bly – need for qu ure – example prob	f g her ura ran ess adu	application to bar 10 Hrs -D applications – element –nodal ectors – example bernbly – element oximation – shape ms. 12 Hrs eometry and field r order elements – al coordinates and netric elements – strain relations – rature formulae – ns in plane stress.				
Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 nod generalized coor coordinate trans structural mech plane problems plane strain and	nal of - of - of - of - of - of - of - of -	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo I Finite Element triangular element nates approach t rmations – triant cs applications i elasticity – ele natural coordinations isymmetric appli	Unit – II Analysis: General form equations – linear bar shape functions – eler iss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations ingular and quadrilateral in 2-dimensions – elastic ment equations – assem ates – Gaussian quadratu ications.	te element method of total potential fo element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation o gular elements – hig – difficulties – nat elements – iso-pa city equations – stra- bly – need for quare – example prob	f g her ura ran ess adn	application to bar 10 Hrs -D applications – element –nodal ectors – example sembly – element oximation – shape ms. 12 Hrs eometry and field r order elements – al coordinates and netric elements – strain relations – rature formulae – ns in plane stress,				
Ritz method – Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension generalized coor coordinate transtructural mech plane problems plane strain and	nal of - of lob men led ordi sfo ani to l ax	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo I Finite Element triangular element nates approach t rmations – triant cs applications i elasticity – ele natural coordinations	Unit – II Analysis: General form equations – linear bar shape functions – eler iss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations ngular and quadrilateral in 2-dimensions – elastic ment equations – assem ates – Gaussian quadratu ications. Unit – IV	te element method of total potential fo element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation o gular elements – hig – difficulties – nat elements – iso-pa city equations – stra ably – need for qu are – example prob	or latic ve ass pro oler ura ran ess adu	application to bar 10 Hrs -D applications – element –nodal ectors – example sembly – element bximation – shape ms. 12 Hrs eometry and field r order elements – al coordinates and netric elements – strain relations – rature formulae – ns in plane stress, 8 Hrs				
Ninte element Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 noor generalized coor coordinate transformations plane problems transformations plane strain and	nal of - of - of - of - of - of - of - of -	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo I Finite Element triangular element nates approach t rmations – triant cs applications i f elasticity – ele natural coordination isymmetric applition	Unit – II Analysis: General form equations – linear bar shape functions – eler uss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations agular and quadrilateral in 2-dimensions – elastic ment equations – assem ates – Gaussian quadratu ications. Unit – IV e Element Method: In	te element method of total potential for element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation o gular elements – hig – difficulties – nat elements – iso-pa city equations – stra- hbly – need for qu are – example prob	or 1 atic ve ass pro- oler oler ass ass pro- oler ass ass pro- oler ass ass pro- oler ass ass ass ass ass ass ass ass atic ass ass ass ass ass ass ass ass ass as	application to bar 10 Hrs 1-D applications – element –nodal ectors – example sembly – element by – element oximation – shape ms. 12 Hrs eometry and field r order elements – al coordinates and netric elements – strain relations – rature formulae – ms in plane stress, 8 Hrs onal problems –				
Ninte element Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 noce generalized coor coordinate transtructural mech plane problems transformations plane strain and Dynamic Ana equations of mode	nal of lob nem lob nem led ordi sfo ani to l ax lys otic	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo I Finite Elemen triangular elemen nates approach t rmations – trian cs applications i elasticity – ele natural coordina isymmetric appli	Unit – II Analysis: General form equations – linear bar shape functions – eler iss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations ngular and quadrilateral in 2-dimensions – elastic ment equations – assem ates – Gaussian quadratu ications. Unit – IV e Element Method: In k form – longitudinal vil	te element method of total potential for element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation of gular elements – hig – difficulties – nat elements – iso-pa city equations – stra- bly – need for quare – example prob	or latic ve ass pro- oler f g her ura ran ess adu len	application to bar 10 Hrs 10 Hrs 1-D applications – element –nodal ectors – example sembly – element oximation – shape ms. 12 Hrs eometry and field r order elements – al coordinates and netric elements – strain relations – rature formulae – ns in plane stress, 8 Hrs onal problems – verse vibration of				
Ninte element Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 nod generalized cod coordinate transformations plane problems transformations plane strain and Dynamic Ana equations of mode beams – consis	nal of - of - of - of - of - of - of - of -	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo I Finite Elemen triangular eleme nates approach t rmations – trian cs applications i elasticity – ele natural coordina isymmetric appli is using Finite on based on weak	Unit – II Analysis: General form equations – linear bar shape functions – eler uss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations agular and quadrilateral in 2-dimensions – elastic ment equations – assem ates – Gaussian quadratu ications. Unit – IV e Element Method: In k form – longitudinal vil – element equations – so	te element method of total potential for element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation of gular elements – hig – difficulties – nat elements – iso-pa city equations – stra bly – need for quare – example prob	or 1 atic verass pro- plen f g her ura ran ess adu	application to bar 10 Hrs I-D applications – element –nodal ectors – example bendly – element oximation – shape ms. 12 Hrs eometry and field r order elements – al coordinates and netric elements – strain relations – rature formulae – ns in plane stress, 8 Hrs onal problems – verse vibration of problems – vector				
Ninte element Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – element Two Dimension variable – 3 noc generalized coor coordinate transformations plane problems transformations plane strain and Dynamic Ana equations of mode beams – consisi iteration method	nal of lob ner lob ner lob ner lob ner lob ner lob ner lob ner lob sfo ani lob ordi sfo ani lob to to lob ordi lob	Finite Element finite element of development of sion to plane true al equations – so at matrices and vo I Finite Element triangular element nates approach t rmations – triant cs applications i elasticity – ele natural coordination isymmetric applition is using Finite on based on wealt t mass matrices – normal mod	Unit – II Analysis: General form equations – linear bar shape functions – eler iss– development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction ents – four noded rectang to nodal approximations ngular and quadrilateral in 2-dimensions – elastic ment equations – assem ates – Gaussian quadratu ications. Unit – IV E Element Method: In k form – longitudinal vil – element equations – soc des – transient vibration	te element method of total potential for element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation o gular elements – hig – difficulties – nat elements – iso-pa city equations – stra- bly – need for qua- ne – example prob	or 1 atic ve ass pro- oler f g her ura ran ess adu len 	application to bar 10 Hrs I-D applications – element –nodal ectors – example sembly – element oximation – shape ms. 12 Hrs eometry and field r order elements – attain relations – strain relations – rature formulae – ns in plane stress, 8 Hrs onal problems – verse vibration of oroblems – vector lamping – mode				
Ninte element Ritz method – element One Dimension generic form of approximation problems – ext connectivity –g functions – eler Two Dimension variable – 3 nod generalized cod coordinate transformations plane problems transformations plane strain and Dynamic Ana equations of method superposition tervice	nal of - of - of - of - of - of - of - of -	Finite Element finite element of development of sion to plane tru al equations – so at matrices and vo I Finite Element triangular element nates approach t rmations – triant cs applications i elasticity – ele natural coordination is using Finite on based on wealt t mass matrices – normal modifique – direct int	Unit – II Analysis: General form equations – linear bar shape functions – eler iss- development of eler olution methods –beam of ectors – assembly – solu Unit – III t Analysis: Introduction end approximations agular and quadrilateral in 2-dimensions – elastic ment equations – assem ates – Gaussian quadratu ications. Unit – IV e Element Method: In k form – longitudinal vil – element equations –scoles – transient vibration tegration methods.	te element method of total potential for element – quadra ment matrices and ement equations – element – nodal ap tion – example prob – approximation o gular elements – hig – difficulties – nat elements – iso-pa city equations – stra bly – need for quare – example prob	or 1 atic vecass pro- plen dif g gher ura ran ess adulen 	application to bar 10 Hrs -D applications – element –nodal ectors – example bendly – element oximation – shape ms. 12 Hrs eometry and field r order elements – al coordinates and netric elements – strain relations – rature formulae – ns in plane stress, 8 Hrs onal problems – verse vibration of oroblems – vector lamping – mode				

Applications in Heat Transfer & Fluid Mechanics: One dimensional heat transfer element application to one-dimensional heat transfer problems- scalar variable problems in 2-Dimensions -Applications to heat transfer in 2- Dimension – Application to problems in fluid mechanics in 2-D. Unit – V 8 Hrs Axisymmetric elasticity problems-Governing equations for Axisymmetric elasticity, Axisymmetric linear triangular element, Axisymmetric four node iso-parametric element. Three dimensional elasticity-Governing differential equations, Four node tetrahedral element, Eight node hexahedral (brick) element, Twenty node isoparametric solid element, Pre stressing, initial strains and thermal effects. Unit - VI (Lab Component) 24 Hours Lab Exercises: 1. **Basic Stress analysis** 2. Deflection and Stress Analysis in beams 3. Nonlinear plastic Deformation and buckling Analysis Two dimensional problems (Plane stress & Plane strain problems) 4. 5. Analysis of Composite materials Analysis of pressure vessels 6. Three dimensional FE analysis 7. **Contact Problems** 8.

Course Outcomes:

After going through this course the student will be able to:

CO1: Demonstrate the basic concepts of finite element methods

CO2: Develop Finite Element Solutions in Structural, thermal and damping domains

CO3: Analyse systems for structural, thermal and damping

CO4: Create linear and non-linear Finite Element solutions

Reference Books:

- 1. Chandrupatla T. R., and Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall, 2003. *ISBN*-10: 0132162741
- 2. Reddy, J. N. "An Introduction to the Finite Element Method", 3rd Edition, McGraw-Hill Science/Engineering/Math, 2005. ISBN-10: 0072466855.
- 3. S. S. Rao "The Finite Element Methods in Engineering, Fifth Edition, Elsevier Publications. *ISBN*-9781856176613
- 4. Bathe, K.J., "Finite element procedures", Prentice Hall of India, New Delhi 2001, *ISBN* 620.00422.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	Н	-	М	Н	Μ	-	-	-	-	-
CO2	Μ	-	Μ	L	-	-	-	-	-	-	-
CO3	-	-	Н	-	М	-	-	-	-	-	-
CO4	-	М	-	М	-	Η	L	-	-	-	-

	PSO1	PSO2
CO1	М	L
CO2	-	М
CO3	М	-
CO4	Н	Н

ADVANCED THEORY OF VIBRATIONS										
Course Code	:	16MMD14		CIE Marks	:	100				
Hrs/Week	:	L:T:P:S	4:0:0:1	SEE Marks	:	100				
Credits	:	5		SEE Duration	:	3 Hours	5			
 Course Learning Objectives (CLO): Student are able to 1. Understand the principles of vibrations. 2. Examine the concepts of vibration modes and natural frequencies and their measurement and estimation for multi-degree-of-freedom systems. 3. Apply numerical techniques to obtain complete solution in Random & Non-linear vibrations. 4. Analyze vibration problems, signature analysis and interpretation of results. 										
Unit – I 10 H										
Review of Mechanical Vibrations: Basic concepts; free vibration of single degree of freedom systems with and without damping, forced vibration of single DOF-systems, Natural frequency. Transient Vibration of single Degree-of freedom systems: Impulse excitation, Arbitrary excitation, Laplace transform formulation.										
			Unit – II				12 Hrs			
Vibration Control:Introduction, Vibration isolation theory, Vibration isolation and motionisolation for harmonic excitation, practical aspects of vibration analysis, shock isolation, Dynamicvibration absorbers, Vibration dampers.Vibration Measurement and applications : Introduction, Transducers, Vibration pickups, Frequency measuring instruments, Vibration exciters, Signal analysisUnit – III12 HrsModal analysis:Dynamic Testing of machines and Structures, Experimental Modal analysis.Vibrations of beams:equation of motion, modal analysis, approximate methods, initial value problem, forced vibrations, special problems, wave propagation Vibrations of membranes:										
equations of mo	t10	on, modal analysis, app	proximate methods.	norovinata mathe	da					
vibrations or p	14	es. equations of motiv	Unit – IV	pproximate metric	Jus		8 Hrs			
Random Vibra response functi density, Fourier	ati on tra	ons: Random phen, Probability distribution Profility distributions of the state of	omena, Time avera ution, Correlation, I ponse.	ging and expecte Power spectrum	d and	value, Fr 1 power	equency spectral			
			Unit – V				8 Hrs			
Signature anal measuring and o Vibration testin Each student ha domain. This w consisting of tw his/her capabilit study could be a or even involve	ysi ng s to vill vo cy (a th bu	is and preventive main additioning instruments equipment: Signal and poselect a topic of inter be for 20 marks with faculty members include of understanding, analogication neoretical one involvin ilding a prototype sys	intenance, Vibration , nalysis instruments, V Self Study prest within the scope hich will be evaluat luding the course fa lyzing and applying ng simulation and an tem.	testing equipmen Vibration signature of the course and ted in TWO pha culty. The student the knowledge to alysis or could be	es a pu ses a t ha sol	and standa ursue stud by a co as to dem ve proble experime	y in that mmittee onstrate ms. The ental one			

Course Outcomes:

After going through this course the student will be able to:

- CO1: Construct Equations of motion based on free body diagrams
- CO2: Analyse systems under free and forced vibrations for natural frequency of vibration
- CO3: Evaluate Mechanical Systems using modal analysis
- CO4: Develop solutions through testing for vibrations and signature analysis techniques

Reference Books:

- 1. S. Graham Kelly, "Mechanical Vibrations", Schaum's Outlines, Tata McGraw Hill, 2007. ISBN-10: 1439062129
- 2. William T. Thomson, Marie Dillon Dahleh, "Theory of Vibration with Application", Prentice Hall Edition, *ISBN*, 0748743804, 2011
- 3. Sujatha, "Vibrations & Acoustics" Tata McGraw Hill Edition, ISBN: 9780070148789, 2013
- 4. S.S.Rao, "Mechanical Vibrations", Pearson Education, 4th ed. ISBN 978-0-13-212819-3, 2012

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 CO1 L Μ Η Μ CO₂ Μ Η L -_ -_ _ _ _ _ Η **CO3** Η _ L _ _ _ _ _ _ **CO4** _ Μ _ Μ Η _ _ _ _ _

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	-	L
CO2	М	-
CO3	-	М
CO4	Н	Н

		ADV	ANCED SOLID	MECHANICS			
		-	(Elective Grou	up – 1)			
Course Code	:	16MMD151		CIE Marks	:	100	
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100	
Credits	:	4	·	SEE Duration	:	3 Hours	5
Course Learnin	ıg (Objectives (CLO):	:				
Student are abl	e to) Ladvanaad strass	atrain correlations	in three dimensional has	lia		
 Underst Identify 		n auvaliceu suess	and physical relations	tionships between mech	nes mi	o. oc and me	torials
 Findentiny Evaluat 	o th	npie manemanca	r fatique fracture	and creen response of co	m	s and ma non engir	neering
materia	ls.	le plustie bellavio	i, iaugue, iracture	and creep response of ee	1111	non engn	leering
Apply t	he	knowledge to des	ign the mechanical	structures in the view p	oin	t of both s	strength
and def	orn	nation including the	he design by mean	s of numerical simulation	1		
			Unit – I				12Hrs
Introduction (0 g	general theory o	f elasticity: assun	ptions and applications	of	linear el	asticity.
Analysis of str	ess	, stress tensors. S	State of stress at a	point, principal stresses	in	two dim	ensions,
Cauchy's stress	s pi	inciple, direction	i cosines, stress co	omponents on an arbitra	ry	plane wi	th stress
octabedral stre	n PI	merpai stresses	in unee dimension	is, success invariants, Eq	fo	r two ar	d three
dimensional str	ress	systems, equilib	rium equations in	polar coordinates for thr	ee-	dimensio	nal state
of stresses.		5 7 1	1	1			
			Unit – II				10 Hrs
Introduction t	o a	nalysis of strain	, types of strain, s	train tensors, strain trans	foi	mation. I	Principal
strains, strain in	iva	riants, octahedral	strains, Mohr's Cir	rcle for Strain, equations	of	Compatil	bility for
Strain, strain r	ose	ttes. Stress-strain	relations, general	lised Hooke's law, com	pati	bility con	nditions,
transformation	fro nla	m Strain compon	ents to stress com	ponents. Strain energy if	i ai	i elastic t	oody, St.
venant s priner	pic	, uniqueness theor	Unit – III				12 Hrs
Theories of F	aile	no and Enorm	Mathaday Introdu	ation Theories of Failu	*0	Use of F	Factor of
Safety in Desig	on.	Mohr's theory o	f Failure. Ideally	Plastic Solid. Stress spa	ce	and Strai	n space.
General nature	of	Yield locus, Yie	eld Surfaces of Tr	esca and Von Mises, S	tres	s- Strain	relation
(Plastic Flow),	Pra	undtl Reuss theory	y, Saint venant – V	on mises equations.			
Principle of Su	per	position, Recipro	cal Relation, Maxy	vell-Betti-Rayleigh Reci	pro	cal theore	em, First
Theorem of Vi	uas rtua	ughano, Express al Work Second t	heorem of Castig	iano Maxwell – Mohr it	ern nteo	mate su mals	ructures,
	lui		Unit – IV		πο _ξ	-iuis.	8 Hrs
Bending of Be	on	s. Introduction	Straight beams an	d Asymmetrical Bendin	σ	Fuler _ F	Remoulli
hypothesis. She	ear	centre or Centre (of Flexure. Shear s	tresses in thin walled op	en	sections.	Bending
of curved beam	ns, I	Deflection of thic	k curved bars.	1		,	e
			Unit – V				8 Hrs
Torsion: Intro	duc	tion, Torsion of g	general prismatic b	ears - Solid sections, Tor	sic	n of Circ	ular and
Elliptical bars,	Т	orsion of equiva	llent triangular ba	r, Torsion of rectangu	ar	bars, Mo	embrane
analogy, Torsi Multiple conno	on	of thin walled	tubes, Torsion of	thin walled multiple of	ell	closed s	sections,
multiple conne	ue	u sections, Centre	or twist and nexu				

Course Outcomes:

After going through this course the student will be able to:

- CO1: Identify the stress strain relations in elastic and plastic conditions
- CO2: Examine bodies subjected to three dimensional stresses for the onset of failure based on failure criteria
- CO3: Analyse deflections in beams subjected to different types of loads in elastic, elastoplastic and plastic conditions

CO4: Evaluate stresses in bars subjected to torsion in elastic, elastoplastic and plastic conditions

Reference Books:

- 1. L. S. Srinath, "Advanced Mechanics of solids", , Tata Mc. Graw Hill, 2000, *ISBN*-13: 978-0070702608, 2009
- 2. S. P. Timoshenko "Theory of Elasticity", Mc. Graw Hill, 3rd edition, 1972 ISBN 978-0-13-223319-3
- 3. R A C Slater "Engineering Plasticity", The Mac Milan Press Ltd., 1st Edition, 1977, ISBN 978-1-349-02162-8
- 4. C.T. Wang "Applied Elasticity", Mc Graw Hill Book Co. ISBN 13: 9780070681255, 2003.

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

PP	8														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11				
CO1	-	М	Н	L	-	Μ	-	-	-	-	-				
CO2	Μ	-	-	М	L	-	-	-	-	-	-				
CO3	-	-	L	-	-	Μ	-	-	-	-	-				
CO4	-	L	-	Н	Н	L	-	-	-	-	-				

	PSO1	PSO2
CO1	М	L
CO2	-	М
CO3	Н	-
CO4	-	Н

ACOUSTICS AND NOISE CONTROL (Elective Group – 1)										
Course Code	:	16MMD152		CIE Marks	:	100				
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100				
Credits	•	4		SEE Duration	:	3 Hrs				
Course Learnin	g C	bjectives (CLO):			•	0 1115				
 Student are able to Understand the basic concepts of acoustics and noise. Apply the fundamentals of engineering acoustics for noise control practice. Identify acoustic instruments for the use and application in noise control. Evaluate basic acoustic parameters such as addition of noise sources, distance attenuation room acoustic parameters 										
		, 1	Unit – I				8Hrs			
Introduction: A sound level calo	Acc cula	oustic and noise c	ontrol, principles of noi	se reduction. Sou	nd	field dime	ensions,			
	Unit – II 10 Hrs									
Evolution an Point emitters, room acoustics Airborne and be	Evolution and propagation of sound: Simple oscillators, resonators, wave forms. Point emitters, geometrical acoustics, absorption, sound fields in rooms: room modes, statistical room acoustics, reverberation period, methods of simulation, and perceptive aspects in rooms. Airborne and body-borne sound insulation.									
Unit – III 12 Hrs										
time constants constant absolu of calculation. level (SIL). Ter	(I, te l Vo npc	F, S), equivalent bandwidth, spin se lume, loudness, a brary threshold shi	continuous sound level ound. Third octave analy annoyance, psycho-acou ift (TTS), permanent thro	l L_{eq} , SEL, TNI. ysis, acoustic quie ustical annoyance, eshold shift (PTS)	So tin sp	und analys g extent, m eech inter	is with nethods ference			
	-	•	Unit – IV				12 Hrs			
Human response of audible sound loudness contour Hearing disord susceptibility. A Assessment of the vibration on human exposures.	 Human response to sound and vibration and psychoacoustics: Human auditory system. Range of audible sound pressure levels and frequencies, infra sound, ultra sound. Pitch. Loudness: equal loudness contours and loudness level. Loudness calculations. Masking. Frequency weightings. Hearing disorders: effects of age, health and noise exposure on hearing acuity. Individual noise susceptibility. Audiometry; basic procedures of manual and automatic audiometry; audiograms. Assessment of noise dose, hearing protectors and their use. Regulatory issues. Effects of noise and vibration on humans and human activity. Indices and methods of assessment of noise and vibration 									
			Unit – V				8 Hrs			
Sound protection, regulations and codes: Work noise (UVV Lärm, workplaces ordinance), machine noise, industrial noise (TA Lärm), street noise, train noise, aviation noise, noise from recreational activities. Course Outcomes:										
After going thro	bug	h this course the s	tudent will be able to:							
CO1: Explain th CO2: Develop h CO3: Analyze t CO4: Apply coo	ne p cno he des	principles of acoust wledge in the use effects of vibratio and regulatory is	stics of acoustic instruments ns and noise on human a sues related to noise exp	for noise control a activities. osure	ina	lysis				

Reference Books:

- 1. R.J. Peters, B.J. Smith, Margaret Hollins, "Acoustics and Noise Control", *ISBN* 2-121-02527-7, 2010
- 2. Sujatha, Vibrations & Acoustics Tata Mc Graw Hill, 2010, *ISBN*: 9780070148789
- 3. Henirich Kuttruff "Acoustics An Introduction" Vikas Publishing House, New Delhi *ISBN10: 0415386802*, 2013
- 4. Moser, Michael, "Engineering Acoustics" Springer-Verlag, Berlin, ISBN10 : 3642443710

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	-	L	Н	Μ	-	-	-	-	-	-
CO2	Μ	L	-	-	-	-	-	-	-	-	-
CO3	-	-	Μ	L	Μ	-	-	-	-	-	-
CO4	L	Н	-	-	-	L	-	-	-	-	-

	PSO1	PSO2
CO1	М	М
CO2	-	-
CO3	Н	L
CO4	L	-

PROFESSIONAL SKILL DEVELOPMENT													
Course Code	Course Code:16HSS16CIE Marks:50												
Hrs/Week	:	L:T:P:S	0:0:4:0	Credits	:	02							
Course Learning Objectives:													
Students are able to													
1. Understand the importance of verbal and written communication													
2. Improve c	lna	litative and quantitative	problem solving	skills									
3. Apply critical and logical think process to specific problems													
4. Manage stress by applying stress management skills													
UNIT 1 5 Hours													
Communicatio	n	Skills: Basics of Con	nmunication, Pe	ersonal Skills &	Prese	ntation Skills,							
Attitudinal Dev		pment, Self Confidence,	SWOC analysis										
Resume writing	g: (Understanding the basic of factor	essentials for a r	esume, Resume wr	iting 1	tips Guidelines							
for better preser	na	tion of facts.	тт э			6 Hours							
Quantitative	1 n	titude and Data Ana	11 2 Ivsis: Number	Systems Math V	Jocabi	ulary fraction							
decimals digit	nle nle	aces etc. Reasoning and	Logical Antituc	le - Introduction to		zle and games							
organizing info	rm	ation parts of an argume	ent common flav	ws arguments and	o puz	intions Verbal							
Analogies – int	roc	luction to different ques	tion types – and	alogies sentence co	mnle	tions sentence							
corrections an	ton	vms/svnonvms vocabul	lary building e	tc Reading Comp	rehen	sion Problem							
Solving	ion		ary building of	te. Reading comp	renen	sion, riooiom							
		UN	IT 3			4 Hours							
Interview Skill	s:	Ouestions asked & how	to handle them,	Body language in	interv	iew, Etiquette,							
Dress code in in	ntei	view, Behavioral and te	chnical interviev	vs, Mock interviews	s - M	ock interviews							
with different P	ane	els. Practice on Stress In	terviews, Techni	ical Interviews, Ger	eral H	HR interviews							
		UN	IT 4			5 Hours							
Interpersonal	ar	nd Managerial Skills:	Optimal co-e	xistence, cultural	sensi	tivity, gender							
sensitivity; capa	abil	ity and maturity model,	decision making	ability and analysis	s for t	orain storming;							
Group discussion	on a	and presentation skills;											
		UN	IT 5			4 Hours							
Motivation an	d	Stress Management: S	elf motivation,	group motivation,	leade	ership abilities							
Stress clauses a	and	stress busters to handle	e stress and de-s	stress; professional	ethics	s, values to be							
practiced, stand	arc	ls and codes to be adopt	ted as profession	nal engineers in the	soci	ety for various							
projects.													
Note: The resp	ect	tive departments should	discuss case str	udies and standards	s pert	aining to their							
domain													
Course Outcor	ne:												
After going thro	oug	h this course the students	s will be able to										
COI: Develop	pro	tessional skill to suit the	industry require	ement									
CO2: Analyze	pro	dorohin and interneticative	and reasoning s	KIIIS									
CO4: Develop	iea	uersnip and interpersona	working skills	nuista hadre lan a									
CO4: Demonst	rate	e verbal communication	skins with appro	priate body languag	ge.								

References

- 1. Stephen R Covey, "The 7 Habits of Highly Effective People", Free Press, 2004 Edition, ISBN: 0743272455
- 2. Dale Carnegie, "How to win friends and influence people", General Press, 1st Edition, 2016,

ISBN: 9789380914787

- 3. Kerry Patterson, Joseph Grenny, Ron Mcmillan, "Crucial Conversation: Tools for Talking When Stakes are High", McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204
- 4. Ethnus, "Aptimithra: Best Aptitude Book", Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in TWO Phases.

Phase	Activity	Weightage
Ι	After 7 weeks - Unit 1, 2 & Part of Unit 3	50%
II	After 12 weeks – Unit 3, 4, 5	50%

CIE Evaluation shall be done with weightage as follows:

Writing skills	10%
Logical Thinking	25%
Verbal Communication & Body Language	35%
Leadership and Interpersonal Skills	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н		L			Η		Н	Н	Н	М
CO2	Н	М	Н						Μ	Н	М
CO3			L			Η		Н	Н	Н	Н
CO4			Н			Η	L	Н	Н	Н	Н

	PSO1	PSO2
CO1		
CO2		L
CO3		
CO4	L	

		II DESEAD	Semester									
Course Code	:	16MEM21R		CIE Marks	:	100						
Hrs/Week	:	L: T: P: S	3:2:0:0	SEE Marks	:	100						
Credits	:	04		SEE Duration	:	3 Hours						
Course Learni	ng	Objectives:										
Students are ab	le t	0										
1. Understand	of t	he underlying principles	of quantitative ar	nd qualitative researc	h							
2. Perform the	gap	analysis and identify the	e overall process	of designing a resear	ch s	tudy.						
3. Choose the 1	nos	t appropriate research m	ethodology to add	dress a particular rese	earc	h problem						
4. Explain a ra	nge	of quantitative and qua	litative approach	es to analyze data ar	nd s	uggest possible						
solutions.		TIn:	4 T			7 Houng						
Overview of B	000	UIII	1-1			/ nours						
Overview of R Mooning of Po	ese	arcii ah Typas of Passarah I	Passarah and Sai	antific Mathad Dafir	ina	the Descorab						
Problem Reserved	seal	Design Different Pases	reh Designs	enunc Methou, Denn	inig	the Research						
FIODICIII, Kesea	ucn	Design, Different Kesea	• II			7 Hours						
Methods of De	Ita	Collection				/ 110015						
Collection of I	rin	harv Data Observation	Method Intervie	w Method Collectic	n o	f Data through						
Questionnaires	C	ollection of Data through	Schedules. Col	lection of Secondary	Da	ta Selection of						
Appropriate M	, etho	od for Data Collection.			Du							
		Unit	– III			8 Hours						
Sampling Met	hod	ls										
Sampling proc	ess	, Non-probability samp	ling, probability	sampling: simple	ran	dom sampling,						
stratified samp	ling	, cluster sampling syste	matic random sa	ampling, Determinati	on	of sample size,						
simple numeric	al p	problems.										
		Unit	-IV			7 Hours						
Processing and	l ai	nalysis of Data										
Processing Ope	erat	ions, Types of Analysis,	Statistics in Res	search, Measures of:	Cer	ntral Tendency,						
Dispersion, As	ym	metry and Relationship,	correlation and	regression, Testing	of	Hypotheses for						
single sampling	g: P	arametric (t, z and F) Ch	ni Square, ANOV	A, and non-paramet	ric 1	ests, numerical						
problems.												
			it-V			7 Hours						
Essential of R	epo	rt writing and Ethical is	ssues:	Demont I Cit	D	a anala D (
Significance of	Ke	port Writing, Different S	teps in writing F	Report, Layout of the	Res	earch Report,						
Precautions for	W1	nung Kesearch Reports.										
Syllabus inclu												
	dec	12 hours of tutorials in	which									
• Faculty	des	12 hours of tutorials in	which:	for specializations w	nder	consideration						
• Faculty	des is e	12 hours of tutorials in expected to discuss resear	which: rch methodology	for specializations used for the domains in	ndei	consideration.						
 Faculty Numeri studying 	des is e cal g m	12 hours of tutorials in expected to discuss resear problems on statistical an ust be discussed.	which: rch methodology nalysis as require	for specializations used for the domains in	ndei whi	consideration. ch students are						

Course Outcomes:

After going through this course the students will be able to

- CO 1. Explain various principles and concepts of research methodology.
- CO 2. Apply appropriate method of data collection and analyze using statistical methods.
- CO 3. Analyze research outputs in a structured manner and prepare report as per the technical and ethical standards.
- CO 4. Formulate research methodology for a given engineering and management problem situation.

Reference Books:

- 1. Kothari C.R., "Research Methodology Methods and techniques", New Age International, 2004, ISBN: 9788122415223
- 2. Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., "Management Research Methodology", Pearson Education India, 2009 Edition, ISBN:9788177585636
- 3. Levin, R.I. and Rubin, D.S., "Statistics for Management", 7th Edition, Pearson Education: New Delhi, ISBN-13: 978-8177585841

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ			М				Н		Н	
CO2		L	Н	Н	М	Μ	L	L		М	L
CO3	L	М	Μ	М	Н	Μ	L	М			М
CO4	Н	Н	Н	Н		L	L	М	Н		Н

	PSO1	PSO2
CO1		
CO2	L	
CO3	М	М
CO4		L

THEORY OF MECHANISMS												
Course Code	:	16MMD22		CIE Marks	:	100 + 50)					
Hrs/Week	:	L:T:P:S	4:0:1:0	SEE Marks	:	100 + 50)					
Credits	:	05		SEE Duration	:	3 + 3 H	ours.					
Course Learning Objectives (CLO):												
Student are able	e to)										
1. Underst	anc	l the fundamenta	als of machine desig	n for desired kir	em	atic or o	dynamic					
performance.												
2. Determine	2. Determine the kinematic chain and mobility, and perform the kinematic analysis of a given mechanism											
3. Apply the	ne f	fundamental princ	iples of statics and dyna	amics to machinery								
4. Identify	the	e common dynami	cal problems that a made	chine may undergo								
			Unit – I				8Hrs					
Coometry of	М	tion. Introductio	n analysis and synth	esis Mechanism	tori	ninology	planar					
Spherical and	sna	atial mechanisms	mobility Grashoffs	law Equivalent r	nec	hanisms	Unique					
mechanisms.	Spa	ematic analysis o	of plane mechanisms:	Auxiliary point n	neth	nod using	rotated					
velocity vector,	H	all - Ault auxiliary	point method, Goodma	an's indirect metho	d.	0						
Unit – II 12 Hrs												
Generalized P	rir	ciples of Dynan	nics: Fundamental law	s of motion, Gen	era	lized coor	rdinates,					
Configuration s	spa	ce, Constraints, V	irtual work, principle o	f virtual work, Ene	erg	y and mor	nentum,					
Work and kin	eti	c energy, Equilib	orium and stability, F	Kinetic energy of	a	system,	Angular					
momentum, Ge	ener	ralized momentum	n. Lagrange's Equation:	Lagrange's equation	n f	rom D'Al	embert's					
principles, Exa	imp voir	bles, Hamilton's	equations, Hamilton's	principle, Lagran	ge	s, equation	on from					
	юц		Unit – III	Examples.			12 Hrs					
System Dyna		Crimosophia a	ation in machines. Eu	lar's aquation of a	mat	ion Dha	Dlana					
representation	IIII Pł	ase plane Analy	sis Response of Line	er Systems to tr	noi	ent distu	rhances					
Synthesis of I	inl	kages: Type, nun	nber, and dimensional	synthesis, Functi	on	generatio	on, Path					
generation and	B	ody guidance, Pr	ecision positions, Stru	ctural error, Cheb	ych	ev spacir	ng, Two					
position synth	esi	s of slider crar	ık mechanisms, Cran	k-rocker mechani	sm	s with c	optimum					
transmission an	igle	e Motion Generat	ion: Poles and relative	e poles, Location of	of p	poles and	relative					
poles, polode, C	Cur	vature, Inflection	circle.									
			Unit – IV				8 Hrs					
Graphical Me	the	ods of Dimension	nal Synthesis: Two p	osition synthesis	of	crank and	i rocker					
mechanisms, T	hre	e position synthes	sis, Four position synthe	esis (point precisio	n r	eduction)	Overlay					
method, Coupl	er	curve synthesis,	Cognate linkages. Ar	nalytical Methods	of	32 Dim	ensional					
Synthesis: Freu	dei	nstein's equation f	or four bar mechanism	and slider crank m	ech	anism, Ex	kamples,					
Bloch's method	of	synthesis, Analyt	ical synthesis using con	nplex algebra.								
			Unit – V				8 Hrs					
							0 1115					

Spatial Mechanisms: Introduction, Position analysis problem, Velocity and acceleration analysis, Eulerian angles.

Unit - VI (Lab Component)	24 Hours						
Modeling and functional simulation of:							
1. Freely falling body							
2: Inclined Plane							
3: Lift Mechanism - Geometry							
4: Lift Mechanism - Simulation							
5: One-degree-of-freedom Pendulum							
6: Projectile							
7: Spring Damper - Part 1							
8: Spring Damper - Part 2							
9: Suspension System 1							
10: Suspension System 2							
11: Four Bar Mechanism							
12: Cam-Follower							
13: Crank Slider							
14: Controls Toolkit in ADAMS/View							

Course Outcomes:

After going through this course the student will be able to:

CO1: Describe the fundamental concepts of kinematics and dynamics

CO2: Design and analyze mechanism and kinematic linkages

CO3: Identify, formulate and solve engineering dynamic problems

CO4: Determine forces acting on the parts of machines used in Industries

Reference Books:

- 1. K.J.Waldron & G.L.Kinzel, "Kinematics, Dynamics and Design of Machinery", Wiley India, 2007. *ISBN*-10: 0471244171
- 2. Greenwood, "Classical Dynamics", Prentice Hall of India, 1988. ISBN-13: 978-0486696904
- 3. J E Shigley, "Theory of Machines and Mechanism" -McGraw-Hill, 1995, *ISBN*-12: 0471344276
- 4. A.G.Ambekar, "Mechanism and Machine Theory", PHI, 2007. ISBN: 978-81-203-3134-1

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	Н	L	I	L	-	-	-	-	-	-
CO2	Н	-	-	L	-	Н	-	-	-	-	-
CO3	-	М	-	-	М	-	-	-	-	-	-
CO4	Μ	-	Н	-	L	Μ	-	-	-	-	-

	PSO1	PSO2
CO1	_	L
CO2	Н	М
CO3	-	-
CO4	L	М

TRIBOLOGY AND BEARING DESIGN									
			(Elective Grou	ıp – 2)					
Course Code	:	16MMD231		CIE Marks	:	100			
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100			
Credits	:	04		SEE Duration	:	3 Hours	1		
Credits : 04 SEE Duration : 3 Hours Course Learning Objectives (CLO): Student are able to Student are able to Student are able to Student are able to Student are able to in the principles of friction, wear and lubrication to predict the frictional behavior of commonly encountered sliding interfaces. > Understand the principles of bearing selection and bearing arrangement in machines. Student are able to in the principles of high contact stresses (Hertz stresses), fatigue-failure, and Elastohydrodynamic (EHD) lubrication in rolling bearings and gears. Identify the tribological system for optimal performance Vinit – I 8Hrs Introduction to Tribology: Introduction, Friction, Wear, Wear Characterization, Regimes of lubrication of contacts, lubrication theories, Effect of pressure and temperature on viscosity. Newton's Law of viscous forces, Flow through stationary parallel plates. Hagen's									
poiseuille's theo equation, Nume	ory eric	, viscometers. Nu al problems	imerical problems,	Concept of lightly loade	ed t	bearings, l	Petroff's		
Unit – II							12 Hrs		
and pressure in slide bearing wi centre of pressu Journal Beari idealized full jo Comparison be performance. N	idu ith ire, ng ouri etw	ced flow. Reyno fixed shoe and Pi effect of end leal s: Introduction t nal bearings, Son een lightly load nerical problems	lds's 2D equation ivoted shoes. Expr kage on performan o idealized full ju- nerfield number an ed and heavily lo	with assumptions. Intro ession for load carrying of ce, Numerical problems. ournal bearings. Load of id its significance, short baded bearings, effects	due cap carr and of	ction to 10 acity. Loc ying capa l partial b end leak	acity of earings, cage on		
		1	Unit – III				12 Hrs		
Hydrostatic I rectangular pad and condition fo EHL Contacts constant. Grubi	Hydrostatic Bearings: Hydrostatic thrust bearings, hydrostatic circular pad, annular pad, rectangular pad bearings, types of flow restrictors, expression for discharge, load carrying capacity and condition for minimum power loss, numerical problems, and hydrostatic journal bearings. EHL Contacts: Introduction to Elasto - hydrodynamic lubricated bearings. Introduction to 'EHL'								
			Unit – IV				8 Hrs		
 Antifriction bearings: Advantages, selection, nominal life, static and dynamic load bearing capacity, probability of survival, equivalent load, cubic mean load, bearing mountings. Porous Bearings: Introduction to porous and gas lubricated bearings. Governing differential equation for gas lubricated bearings, Equations for porous bearings and working principal, Fretting phenomenon and its stages. 									
Unit – V 8 Hrs									
Magnetic Bea equations used magnetic bearin Course Outcor	rin in 1gs. nes	gs: Introduction magnetic bearir Electrical analog	to magnetic beangs and working gy, Magneto-hydro	rings, Active magnetic principal. Advantages an odynamic bearings	be nd	earings. D disadvant	Different ages of		

After going through this course the student will be able to:

CO1: Demonstrate fundamentals of tribology, lubricants and methods of lubrication

CO2: Analyze bearings for load carrying capacity, frictional force and power loss

CO3: Illustrate the different modes of lubrication system for various applications.

CO4: Design the bearing system for various type of viscosity of the lubricant with respect to temperature and pressure in the bearing

Reference Books:

- 1. Mujamdar.B.C "Introduction to Tribology of Bearing", Wheeler Publishing, New Delhi 2001, *ISBN* 0-471-65659-3
- 2. Radzimovsky, "Lubrication of Bearings Theoretical principles and design" Oxford press Company, 2000, *ISBN* 5-341-43736-1
- 3. F. M. Stansfield, Hydrostatic bearings for machine tools and similar applications, Machinery Publishing, 1970, *ISBN* 10-481-34631-2
- 4. Harnoy, A. "Bearing Design in Machinery, Engineering Tribology and lubrication", published by Marcel Dekker Inc. 2003, *ISBN* 0-8247-0703-6

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	Μ	L	-	Μ	-	L	-	-	-	-
CO2	-	Н	-	Μ	-	Н	-	-	-	-	-
CO3	-	-	М	-	-	-	-	-	-	-	-
CO4	M	М	L	М	Н	-	_	_	_	_	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	М	L
CO2	L	-
CO3	-	М
CO4	Н	Н

DESIGN OF HYDRAULICS AND PNEUMATICS									
Course Code	•	(Electiv 16MMD232/16MTE232	e Group – 2	2) CIF Marks		100			
	•		1000		•	100			
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100			
Credits	:			SEE Duration	:	3 Hours			
Course Learni	ng	Objectives (CLO):							
Students are abl	e to	0	1'						
• Identify the symbolic representation of hydraulic systems									
• Understand	• Understand the working of industrial systems employing fluid power								
• Identify the	WO	orking of hydraulic circuits	1 · 1						
• Select the a	ppr	opriate components through	design calc	culations and Demonst	trate	the electronic			
components	ın	pneumatic systems.	т			10 11			
		Unit -	-1			10 Hrs			
Hydraulic Act	ua	tors and Motors: Pascal's	law and j	problems on Pascal's	s La	aw, continuity			
equations, intro	odu	ction to conversion of uni	ts. Structure	e of Hydraulic Contr	ol S	System Linear			
Hydraulic Actu	atc	ors [cylinders], Mechanics	of Hydraul	ic Cylinder loading,	Hyc	draulic Rotary			
Actuators, Gear	r m	notors, vane motors, piston	motors, Hy	draulic motor theoret	cal	torque, power			
and flow rate, a	nd	hydraulic motor performanc	e.						
		Unit –	II			10 Hrs			
Control Com	pol	nents in Hvdraulic Sys	stems: Direc	ctional Control Val	ves	– Symbolic			
representation,	Co	nstructional features, pressu	re control v	valves – direct and pil	lot c	operated types,			
flow control val	ves	S. 27		1		1 ,1 ,			
Hydraulic Cir	cui	it Design and Analysis: (Control of s	single and double –	act	ing Hydraulic			
Cylinder, regen	era	tive circuit, pump unloadin	g circuit, D	ouble pump Hydrauli	c sy	stem, Counter			
Balance Valve	ap	plication, and Hydraulic cy	linder sequ	encing circuits. Lock	ed	cylinder using			
pilot check val	ve,	cylinder synchronizing ci	rcuits, spee	d control of hydraul	ic c	ylinder, speed			
control of hydra	uli	c motors, accumulators and	accumulator	r circuits.					
		Unit –	III			10 Hrs			
Introduction t	o P	neumatic Control: Choice	of working	medium, characterist	ics	of compressed			
air. Structure	of 1	Pneumatic control system.	Pneumatic	Actuators: Linear c	ylind	ders – Types,			
conventional ty	pe	of cylinder working, end	position cus	shioning, seals, moun	ting	arrangements			
applications. R	od-	less cylinders, types, work	ing advantag	ges. Rotary cylinder	type	es construction			
and application	D	besign parameters, selection.							
		Unit –	IV			08 Hrs			
Directional Co	ntr	ol Valves: Symbolic represe	entation as p	er ISO 1219 and ISO	559	9. Design and			
constructional	asr	pects, poppet valves, slide	valves sp	ool valve, suspended	d se	eat type slide			
valve. Simple	Pne	umatic Control: Direct an	d indirect	actuation pneumatic	cyli	nders, use of			
memory valve.	Fl	low control valves and spe	eed control	of cylinders supply	air	throttling and			
exhaust air thro	ttli	ng use of quick exhaust valv	e. Signal pr	ocessing elements: Us	se of	Logic gates –			
OR and AND	gate	es pneumatic applications. I	Practical exa	mples involving the	use	of logic gates.			
Pressure depend	len	t controls types construction	n-practical a	applications. Time dep	penc	lent controls –			
Principle, construction, practical applications.									
Unit – V 10 Hrs									
Multi-cylinder	A	pplications: Coordinated an	nd sequentia	al motion control. M	otio	n and control			
diagrams – Sig	gna	l elimination methods. Ca	scading me	thod – principle. Pra	actic	al application			
examples (up	to	two cylinders) using case	ading meth	nod (using reversing	val	ves). Electro-			
Pneumatic cont	rol	Principles-signal input and	output pilo	t assisted solenoid con	ıtrol	of directional			

control valves, use of relay and contactors. Control circuitry for simple single cylinder applications. Compressed air: Production of compressed air – compressors, preparation of compressed air- Driers, Filters, Regulators, Distribution of compressed air- Piping layout.

Course Outcomes:

After going through this course the student will be able to:

- CO1 Illustrate and explain the significance hydraulic and pneumatic components
- CO2 Describe the symbolic representations of fluid power components in an industrial circuit.
- CO3 Evaluate the selection of valves for specific applications

CO4 Design and develop hydraulic and pneumatic based system for industrial applications.

Reference Books:

- 1. Anthony Esposito Fluid Power with applications, Fifth edition Pearson education, Inc. 2000. ISBN- 10: 129202387
- 2. Andrew Parr Pneumatics and Hydraulics. Jaico Publishing Co. 2000. ISBN- 10: 0750644192
- 3. S.R. Majumdar Oil Hydraulic Systems Principles and Maintenance, Tata Mc Graw Hill publishing company Ltd. 2001. ISBN- 10: 0074637487
- 4. S.R. Majumdar Pneumatic Systems, Tata Mc Graw Hill publishing Co., 1995. ISBN-0074602314.

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	-	-	-	-	-	-	-	-	-	-
CO2	-	Н	Μ	Μ	Μ	-	-	-	-	-	-
CO3	-	-	Μ	Μ	-	-	-	-	-	-	-
CO4	Н	Μ	L	-	Н	-	L	-	-	-	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	L	L
CO2	М	-
CO3	-	L
CO4	L	Н

THEORY OF PLATES AND SHELLS												
			(Elective Group – 3)									
Course Code	:	16MMD241		CIE Marks	:	100						
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100						
Credits	:	04		SEE Duration	:	3 Hours	6					
Course Learnin	g C	Objectives (CLO):										
Student are able	e to				r	1						
Underst	anc 201	the classical sti	ructural mechanics appi	roximations of M	len	ibrane, Pl	late and					
> Apply	ene	rgy formulations	to demonstrate the c	consistent derivat	ion	of appr	oximate					
boundary conditions and edge effects.												
Identify	the	e necessary tools t	o describe static, dynami	ic and non-linear r	no	ions.						
Evaluate	e th	e buckling, vibrat	ion and stress parameter	s in thin shells usi	ng	numerica	1					
approxi	mat	tion techniques.	T T •/ T				011					
			Unit – I				8Hrs					
General Intro	du	ction: Review of	equations of elasticity-	kinematics, com	ipa	tibility eq	uations,					
stress measures	s- e	equations of moti	ons- constitutive relatio	ns- transformation	10	f stresses	, strains					
and stiffness-ei	her	gy principles and	variational methods in	elasticity- virtua	l v	vork-exter	mal and					
niternal virtua	l \ 	vork variational	operator- functionals-	Euler Lagrange	e tio	quations-	energy					
principles- rian	1110	on s principie- pri		potentiai- applica	10							
			Unit – II				12 Hrs					
Classical The	orv	Of Plates: Pla	ites as structural elem	ents- stress and	m	oment res	sultants-					
assumptions ma	ade	in the classical th	eory- displacement field	s and strains- equ	atio	ons of equ	ilibrium					
in Cartesian co	ord	linates and in pol-	ar coordinates- boundar	y conditions – be	ndi	ng of rect	tangular					
plates with var	iou	s boundary condi	tions and loading- symi	netrical and asym	nme	etrical ber	nding of					
circular plates-l	im	itations of classica	al theory- finite element a	analysis								
			Unit – III				12 Hrs					
Buckling An	aly	sis of Rectangu	ilar Plates: Buckling	of simply supp	or	ted plates	s under					
compressive for	rce	s- governing equ	ations- the Navier solu	tion- biaxial com	pre	ession of	a plate-					
uniaxial compr	ess	ion of a plate- b	ouckling of plates simple	ly supported on t	W	o opposite	e edges-					
Levy's solution	l- b	ouckling of plates	with various boundary of	conditions- genera	ul t	ormulation	n- finite					
element analysi	S		TT:4 TV7				0 II					
			Unit – Iv				ð Hrs					
Vibration of I	Plat	tes: Governing ed	quations for natural flex	ural vibrations o	f r	ectangular	plates-					
natural vibratio	ns	of plates simply	supported on all edges-	vibration of plat	es	with two	parallel					
sides simply su	ıpp	orted Levy's solution	ition- vibration of plate	s with different b	ou	ndary con	Iditions-					
Rayleign-Ritz method Natural vibration of plates with general boundary conditions- transient												
	ıng	diai places- inne	Unit – V				8 Hrs					
Analysis of T	hir	Electic Shells	of Povolution, Classif	figation of shall	011	faces as	omatria					
properties of sl	nn 1ell	s of revolution-	general strain displacem	ent relations for	su she	llaces- ge	olution-					
stress resultants	лон 3- Р	auations of motic	on of thin shells analytic	cal solution for th	in	cylindrica	l shells-					
membrane theo		flavura under o	stress resultants- equations of motion of thin shells, analytical solution for thin cylindrical shells-									
membrane theory- flexure under axisymmetric loads, shells with double curvature- geometric												

shells- finite element analysis.

Course Outcomes:

After going through this course the student will be able to:

- CO1: Apply the structural mechanics approximations of membrane, plates and shells.
- CO2: Develop simple modifications to the membrane plate and shell theories
- CO3: Describe the static, dynamic, and non-linear motion of membrane, plate and shell structures.
- CO4: Analyze numerical problems in shells of revolution

Reference Books:

- 1. Reddy,J.N., "Theory and Analysis of Elastic Plates & Shells", C.R.C. Press, NY, USA, 2nd Edition, *ISBN* 9780849384158
- 2. Szilard, R., Theory and Analysis of Plates, Prentice Hall Inc., 1999, *ISBN* 0-12-9353336-2
- 3. Timoshenko, S. and Krieger S.W. Theory of Plates and Shells, McGraw Hill Book Company, New York 1990, *ISBN* 0-13-913426-3
- 4. Wilhelm Flügge, Stresses in shells, Springer Verlag, ISBN 978-3-662-01028-0

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	Μ	Н	L	-	-	-	-	-	-	-
CO2	-	-	-	М	-	L	-	-	-	-	-
CO3	Н	L	L	-	-	-	-	-	-	-	-
CO4	L	М	-	Н	Н	L	-	-	-	-	-

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	М	L
CO2	L	-
CO3	-	М
CO4	Н	Н

		INDUST	FRIAL ROBOT	ICS		
Course Code			ctive Group – 3)	CIE Marlea	_	100
Course Code	:		4.0.0.0	CIE Marks	:	100
Hrs/ week	:	L:1:P:5	4:0:0:0	SEE Marks	:	100
Credits	:			SEE Duration	:	3 Hours.
Course Learni	ng	Objectives (CLO):				
1 Understand	e i the	0 structure and configurat	tion of Industrial	robota		
1. Understand 2. Analyze the	une Izi	nematic and dynamic rel	ated analysis of ir	dustrial robots		
2. Analyze the	וא tł ב	he hasic structure of traie	ctory interpolator			
4. Describe the		onfiguration of various ty	pes of autonomo	us robots		
		UI	nit – I			07Hrs
Automation an	ıd	Robotics - Historical I	Development, De	efinitions, Basic Str	uctu	re of Robots,
Robot Anatomy	y,	Complete Classification	of Robots, Fun	damentals about R	obo	t Technology,
Factors related	to	use Robot Performance,	Basic Robot Co	nfigurations and the	ir R	elative Merits
and Demerits,	T	ypes of Drive Systems	s and their Rel	ative Merits, the V	Wri	st & Gripper
Subassemblies.	С	oncepts and Model abo	ut Basic Control	l System, Control I	_00]	ps of Robotic
Systems, PTP a	nd	CP Trajectory Planning,	Control Approac	hes of Robots		I.
		Un	it – II			10Hrs
Kinematics of	R	obot Manipulator: Intr	oduction, Genera	al Description of Ro	obot	t Manipulator,
Mathematical I	Pre	liminaries on Vectors &	& Matrices, Hon	nogenous Represent	atio	on of Objects,
Robotic Manipu	ila	tor Joint Co-Ordinate Sys	stem, Euler Angle	e & Euler Transform	atio	ns, Roll-Pitch-
Yaw(RPY) Ira	nst	ormation, Relative Trans	formation, Direct	t & Inverse Kinemat	ICS	Solution, D H
Representation	æ vi	Displacement Matrices	io Differential T	ingurations, Geomet	rica	i Approach to
Transformation	in	Robotic Manipulation	ic Differential 1		uuc	dion, Jacobian
Transformation		Uni	it – III			12Hrs
Robotic Work	sp	ace & Motion Traie	ctory: Introducti	ion. General Struc	ture	s of Robotic
Workspaces, M	lar	ipulations with n Revo	olute Joints, Rob	otic Workspace Pe	rfor	mance Index,
Extreme Reach	les	of Robotic Hands, Ro	obotic Task Des	cription. Robotic N	/loti	on Trajectory
Design: - Introd	luc	ction, Trajectory Interpol	ators, Basic Struc	ture of Trajectory In	terp	olators, Cubic
Joint Trajectori	es.	. General Design Consi	deration on Traj	ectories: 4-3-4 & 3	-5-3	3 Trajectories,
Admissible Mo	tio	n Trajectories.				1
		Un	it – IV			12Hrs
Dynamics of	R	obotic Manipulators:	Introduction, E	Bond Graph Mode	ling	g of Robotic
Manipulators,	Ex	amples of Bond Graph	Dynamic Mode	eling of Robotic N	Iani	pulator. Brief
Discussion on	Lag	grange–Euler (LE) Dyna	mic Modeling of	Robotic Manipulat	ors:	- Preliminary
Definitions, Ge	nei	ralized Robotic Coordina	ates, Dynamic Co	onstraints, Velocity of Tanana Naratan	ΧA Ε	Acceleration of
Found Frame	s,	Robolic Mass Distribu	ation & Inertia	rensors, newton's	EC	quation, Euler
Dynamic Mode	; I Jin	Lagrangian & Lagrange	tors: Velocity	of Joints Kinetic E	ang	ge-Euler (LE)
Potential Energy	-111 TV	V of Robotic Arm T	be Lagrange I	Two Link Robotic	ner v D	by r or Ann,
Distributed Mas	SS.	Dynamic Equations of M	Intion for A Gene	ral Six Axis Manipu	lato	r
Distributed inte	,,	Un	it – V		iuro	07Hrs
Autonomous R	ob	ot: Locomotion Introduc	tion, Key issues f	for locomotion Lege	ed l	Mobile Robots
Leg configurati	on	s and stability Examples	s of legged robot	locomotion Wheele	ed N	Mobile Robots
Wheeled locon	not	tion: the design space	Wheeled locom	otion: case studies]	Mobile Robot
Kinematics Intr	od	uction Kinematic Model	s and Constraints	Representing robot	pos	sition Forward
kinematic mod	els	Wheel kinematic con	straints Robot k	cinematic constraint	s, 1	Mobile Robot

Maneuverability Degree of mobility Degree of steerability Robot maneuverability.

Course Outcomes:

After going through this course the student will be able to:

- CO1: Analyze the manipulator design including actuator, drive and sensor issues
- CO2: Calculate the forward kinematics, inverse kinematics and Jacobian industrial robots
- CO3: Solve trajectory and dynamic related robotic problems
- CO4: Evaluate the different configurations and stability of autonomous robots

Reference Books:

- 1. Mohsen Shahinpoor "A Robot Engineering Textbook" Harper & Row publishers, New York.ISBN:006045931X
- 2. Fu, Lee and Gonzalez, "Robotics, control vision and intelligence," McGraw Hill International.ISBN:0070226253
- 3. John J. Craig, "Introduction to Robotics", Addison Wesley Publishing, ISBN:0201543613
- 4. Roland Illah R. SiegwartNourbakhsh, Autonomous mobile robots, The MIT Press Cambridge, Massachusetts London, England, 2004.ISBN:0262015358

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

L

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1			
CO1	Н	-	-	-	-	-	L	-	-	-			
CO2	-	Н	М	М	-	-	-	L	-	-			
CO3	-	Н	М	М	-	-	-	L	-	-			

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)

	PSO1	PSO2
CO1	L	L
CO2	М	-
CO3	-	L
CO4	L	Н

CO4

PO11

_

_

_

_

SELECTION OF MATERIALS AND PROCESSES									
(Elective Group – 4)									
Course Code:	:	16MMD251		CIE Marks	:	100			
Hours /Week:	:	L:T:P:S	4:0:0:0	SEE Marks	:	100			
Credit	:	04		SEE Duration	:	3 Hours			
Course Learnin Students are able (1) Understand t (2) Identify the n (3) Distinguish b (4) Evaluate the Thermoplastic Polyethylene, Polyamides, Po	ng C e to he p nan betw desi Poly Poly lyca	Dbjectives (CLO) properties of different ufacturing processs yeen processes for p ign considerations Unit ymers & Its Manu ypropylene, Polyst urbonates, Review n molding and blog	ent materials and com based on material and bolymers, metals and based on material & p t - I facturing Processes styrene, Polyester, of Properties, Extru- w molding process A	posites l product ceramics process Polyvinyl Chlo ision process, inj	oride	10Hrs , Acrylic, on molding			
	3310	Unit	– II	ppileations of the		10Hrs			
Thermoset Poly Epoxy resins, Poly 15), Hand layup Filament windin Micro & Macro Rule of mixture Strength, Comp considerations for	yme olye o, V g ar o Me o de olian	rs & Manufacturi ster Resins, Vinyl acuum Bagging, T nd pultrusion Proce echanical Analysis nsity, Poisson ration ace and Stiffness	ing Processes for Con Esters Resin, High To hermal Curing, Resin ss b, Lateral and Longitu matrix for 2D lan	mposites emperature Resin n Transfer Moudi udinal Modulus, U nina, and angle	syste ng, 1 Jltim lami	ems (PMR- Auto-Clave nate Tensile ina, design			
	51 50	<u>Unit</u>	– III	.415		10Hrs			
Die Casting Pro Die casting allo investment cast multicavity mou Powder Metallic Metallic powder preparation of g	oces bys, ting, tids, tids, urgy rs – reen	ses classification of o horizontal and inspection of casti v Processes synthesis – ball mi compact, pressure	castings, hot and col vertical machines, f ng, defects in castings lling, spray process, a e less and pressure-ass	d chamber pressu eed system layo s, numerical on mo atomization, and c sisted sintering, fin	ure o ut, b ould hara	die casting, Single and design acterization, ing process,			
applications of H	PM,	numerical on PM r	nould design,						
Ceramic Mater Ceramic materia extrusion of cer ceramics	ials als - rami	Unit & Processing Teo Silicate & Non-si ics, role of additiv	– IV chnologies licate Ceramics, Alur ves, industrial, dome	mina, Zirconia; Pı stic and medical	ressin appl	10Hrs ng, casting, lications of			
		Unit	– V			9Hrs			
Materials & Process for Design Introduction, Nature of the Selection Process, Analysis of the Material Performance Requirements and Creating Alternative Solutions, Initial Material Screening of Solutions, Comparing and Ranking Alternative Materials, Design Considerations for Cast Components, Molded Plastic Components, Powder Metallurgy Parts, Detail Design and Selection of Materials and Processes.									
CO1: Evolution	ics the	manufacturing pr	cess involved therm	onlastic thermos	et a	nd ceramic			
COI. Explain	ule	manuracturing pro	cess involved merm	opiasue, mennos	ci d	nu ceramic			

materials

CO2: Apply rule of mixtures to evaluate mechanical properties of composites

CO3: Describe die casting and powder metallurgy processes

CO4: Evaluate the design considerations based on material & process

Reference Books:

- 1. Autar Kaw, "Mechanics of Composite Materials", Taylor & Francis, *ISBN* 8870-1-118-02227-6.
- Fred Billyer, "Text Book on Polymer Science", 3rd Edition, Wiley Publication, ISBN 54-1-118-27-4
- 3. A K Sinha, "Powder Metallurgy", 2nd Edn, Dhanpath Rai Publications, *ISBN* 1-118-04527-6.
- 4. Do Ehler H A, "Die Casting", McGraw Hill Publications, *ISBN* 1056-1-118-06.

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	Μ	L	-	Μ	-	-	-	-	-	-
CO2	-	L	М	М	-	М	-	-	-	-	-
CO3	L			L	Μ	-	-	-	-	-	-
CO4	-	Μ	L	L	-	Н	-	-	-	-	-

	PSO1	PSO2
CO1	L	L
CO2	-	-
CO3	Н	М
CO4	L	-

COMPUTER APPLICATIONS IN DESIGN												
	(Elective Group – 4)											
Course Code	:	16MMD252		CIE Marks	:	100						
Hrs/Week	:	L:T:P:S	4:0:0:4	SEE Marks	:	100						
Credits	:	04		SEE Duration	:	3 Hrs						
Course Learning Objectives (CLO):												
Graduates shall	be	able to										
1. Memorize th	e e	quations of transformatio	ons, curves, solid	models and surfaces								
2. Understand t	he	concept of computer Gra	phics	0 1 1								
3. Demonstrate	the	e principles of wire frame	e, Geometric, and	surface modeling								
4. Distinguish	the	different concepts of alg	orithm			00 11						
				1 1 1 1		08 Hrs						
Computer Gra	iph	ics: Line drawing algorithm	thms: DDA, Bre	senham's algorithms	5, M	lid-point circle						
algorithms, co	ord	inate systems, window	ing, View gene	ration, Clipping, T	rans	formations of						
geometry.		TT	•4 TT			10 11						
					,							
Software Configuration: Software configuration of a graphics system, Functions of a graphics												
package, Math	em	atics of projections, Hic	iden line remova	al, Hidden surface i	remo	oval, Snading,						
Rendering.	m	try modeling. Poqui	romants of good	matria modaling a	000	atria modala						
geometric const	III¢ truz	ction methods modeling	facilities desired	metric modering, g	eon	ieuric models,						
geometric construction metricus, modering facilities desired.												
Wireframe M	od.	eling: Classification of	wire frame en	tities curve repres	enta	tion methods						
parametric ren	res	entation of analytic c	urves curvature	continuity Lagra	onta 19e	interpolation						
Parametric repr	ese	entation of synthetic curv	es. curve manipu	lations.	-80	interpolation,						
		Un	it – IV			8 Hrs						
Solid Modelin	g:	Application of solid mo	dels, modeling c	onsiderations of sol	ids.	geometry and						
topology, solid	m	odeling scheme, Bound	lary Representat	ion, Winged edge	data	structure for						
Boundary repr	ese	entation, Euler operation	ons, Constructiv	e solid geometry,	Sw	eeping, Solid						
Manipulations.						1 0,						
		Un	nit – V			08 Hrs						
Surface model	ing	g: Introduction, Planes,	Vector Planes, s	urface entities, Surf	ace	representation						
methods, Quad	lrat	ic Surface in normal for	orms, Quadratic	Surface in general	for	ms, Quadratic						
Surface in ma	trix	k form, parametric surf	aces, Parametric	representation of	ana	lytic surfaces,						
Parametric repr	ese	entation of synthetic surfa	ices, Surface Mar	nipulations.								
Course Outcon	nes	5:										
After going three	oug	this course the student	will be able to:									
CO1: Discuss	the	e concepts of Computer (Graphics in CAD	in product developm	ent							
CO2: Apply the	ne (concepts of CAD in the r	nanufacturing inc	lustry								
CO3: Analyze	th	e concepts of computer A	Aided Design									
CO4: Evaluati	ing	the techniques involved	in CAD.									

Reference Books:

- 1. Chennakesava R Alavala "CAD/CAM Concepts and Applications", 1st Ed PHI, New Delhi, 2009 ISBN 978-81-203-3340-6
- 2. P.N. Rao, "CAD/CAM Principles and Applications", 3rd Ed., McGraw Hill, Education Pvt Ltd., New Delhi ISBN 0-07-058373-0
- 3. Ibrahim Zeid, "Mastering CAD/CAM", 2nd Ed., TMH Publishing Company Limited., New Delhi, ISBN 0-07-0634334-3
- 4. M.P. Groover and 3 E W Zimmers, CAD/CAM Computer aided Design and Manufacturing, 9th Ed, 1993, ISBN 81-203-0402-0

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	L	Η	-	-	-	-	-	-	-	-
CO2	Н	Μ	Μ	L	-	-	-	-	-	-	-
CO3	L	Н	-	Η	Μ	-	-	-	-	-	-
CO4	-	-	L	Μ	Н	L	-	-	-	-	-

	PSO1	PSO2
CO1	Н	-
CO2	М	L
CO3	L	М
CO4	-	Н

MINOR PROJECT											
Course Code : 16MCM26 CIE Marks : 1											
Hrs/Week	:	L:T:P:S	0:0:10:0	SEE Marks	:	100					
Credits:05SEE Duration:3 Hours											
Course Learni	ng	Objectives:									
Students are abl	le t	0									
1. Understand	the	e method of applying eng	ineering know	ledge to solve specific	prot	olems.					
2. Apply engin	iee	ring and management pri	inciples while	executing the project							
3. Demonstrat	e tł	ne skills for good present	ation and tech	nical report writing skil	ls.						
4. Identify and	l so	lve complex engineering	g problems usin	ng professionally prescr	ribec	l standards.					

GUIDELINES

- 1. Each project group will consist of maximum of two students.
- 2. Each student / group has to select a contemporary topic that will use the technical knowledge of their program of study after intensive literature survey.
- 3. Allocation of the guides preferably in accordance with the expertise of the faculty.
- 4. The number of projects that a faculty can guide would be limited to four.
- 5. The minor project would be performed in-house.
- 6. The implementation of the project must be preferably carried out using the resources available in the department/college.

Course Outcomes:

After going through this course the students will be able to

- **CO1:** Conceptualize, design and implement solutions for specific problems.
- **CO2:** Communicate the solutions through presentations and technical reports.
- **CO3:** Apply resource managements skills for projects
- **CO4:** Synthesize self-learning, team work and ethics.

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members : guide, two senior faculty members and Head of the Department.

Phase	Activity	Weightage
Ι	Synopsis submission, Preliminary seminar for the approval of	20%
	selected topic and Objectives formulation	
II	Mid-term seminar to review the progress of the work and	40%
	documentation	
III	Oral presentation, demonstration and submission of project	40%
	report	

****Phase wise rubrics to be prepared by the respective departments**

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of objectives	10%
• Design and simulation/ algorithm development/experimental setup	25%
• Conducting experiments / implementation / testing	25%
• Demonstration & Presentation	15%
• Report writing	25%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Presentation / Demonstration of the project	20%
3.	Methodology and Experimental Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	М	М	Н	Н	Н			М		Н	Н
CO2					Н			Н	Н	Н	
CO3	Н	Н	М		М	М	Н	Н		М	Н
CO4		Н				Н	М	М	М	Н	

	PSO1	PSO2
CO1	Н	М
CO2		L
CO3		М
CO4	М	М