Rashtreeya Sikshana Samithi Trust

R.V. College of Engineering

(Autonomous Institution affiliated to VTU, Belagavi)

Department of Mechanical Engineering

Master of Technology (M.Tech.)

Product Design and Manufacturing

Scheme and Syllabus of Autonomous System w.e.f 2016

VISION

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering.
- Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- Facilitating faculty development through continuous improvement programs.
- Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs

Program Educational Objectives (PEO)

M.Tech in Product Design and Manufacturing Graduate will be able to

- **PEO1:** Demonstrate knowledge and understanding of engineering principles to design and analyze products and their manufacturing processes.
- **PEO2:** Apply modern tools to evaluate product cost, quality and management of its life cycle.
- **PEO3**: Create new products by synthesizing functional requirements with a concern for environment and sustainability.
- **PEO4:** Exhibit good communication skills, ability for life long learning, team work, and professional ethics.

Program Outcomes (PO)

- M. Tech. in Product Design and Manufacturing graduates will be able to:
 - **PO1:** Engineering Knowledge: Apply knowledge of mechanical engineering in the areas of design, manufacturing and materials to design products.
 - **PO2: Problem Analysis**: Identify need for new product development and design appropriate products.
 - **PO3:** Design & Development of Solutions: Design and implement new products with improved performance.
 - **PO4:** Modern Tool Usage: Use advanced software tools to design, analyze and evaluate products for its functional requirements and life cycle.

PO5:	Engineer and Society : Develop new products considering public health and safety
PO6:	Environment and Sustainability : Design and evaluate products considering environment and sustainability.
PO7:	Ethics: Apply professional, legal, ethical issues while designing products
PO8:	Individual and team work: Function effectively in teams and in diverse
	multidisciplinary environments to accomplish common goals.
PO9:	Communication: Communicate effectively with diverse groups to exhibit
	leadership qualities in working environment
PO10:	Project Management and Finance: Apply principles of project management for
	effective execution of product development and product life cycle management.

PO11: Life-long Learning: Pursue life-long learning for enhancing knowledge and skills.

Program Specific Criteria (PSC) as per American Society of Mechanical Engineers

The curriculum is designed to enable the students to (a) apply principles of engineering design, analysis, selection of materials and manufacturing processes using modern tools and techniques to new products; (b) be proficient in product costing, quality assessment and its life cycle management; (c) work in teams, communicate effectively, demonstrate concern for environment and sustainability of products and processes.

The faculty members of the program possess in-depth understanding and expertise in their areas of specialization with a commitment to periodically update their knowledge in respective domains.

Program Specific Outcomes (PSO)

M.Tech in Product Design and Manufacturing Graduate will be able to

- **PSO1:** Design products, select materials and process, perform simulation and analysis for automobile, consumer goods, machine tools and allied industries.
- **PSO2:** Apply the knowledge of quality, ergonomics, product life cycle management and costing to engineering products and systems

R. V. College of Engineering, Bengaluru – 59.

(An Autonomous Institution affiliated to VTU, Belagavi)

Department of Mechanical Engineering

M. Tech in Product Design and Manufacturing

	M.TECH FIRST SEMSESTER									
Sl.	Comme Code	Correct Title	D.C		ΓΙΟΝ					
No	Course Code	Course Title	BOS	L	Т	Р	S	Creatts		
1	16 MEM11P		IM							
		Project Management		4	0	0	0	4		
2	16MAT12B	Probability & Statistics for	MA							
		Engineers		4	0	0	0	4		
3	16MPD13	3 Industrial Design and								
		Ergonomics (Theory &								
		Practice)		4	0	1	0	5		
4	16MPD14	Materials and Processes for	ME							
		Design		4	0	0	1	5		
5	16MPD15X	Elective 1	ME	4	0	0	0	4		
6	16MPD16	Professional Skill	HSS	0	0	2	0	2		
		Development								
	Total			20	0	3	1	24		

LIST OF ELECTIVE COURSES (4 CREDITS)

Elective 1						
16MPD151	Design for Manufacture	16MPD152	Simulation of			
			Manufacturing Systems			

R. V. College of Engineering, Bengaluru – 59

(An Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi)

	wi. Tech in Product Design and Manufacturing									
	M.TECH SECOND SEMSESTER									
SI. Course C. THE D.G. CREDIT ALLOCATION										
No.	Code	Course The	BOS	L	Т	Р	S	Creatts		
1	16MEM21R	Research Methodology	IM	3	1	0	0	4		
2		Computer Aided Engineering	ME	4	0	1	0	5		
	16MPD22	(Theory & Practice)								
3	16MPD23X	Elective 2	ME	4	0	0	0	4		
4	16MPD24X	Elective 3	ME	4	0	0	0	4		
5	16MPD25X	Elective 4	ME	4	0	0	0	4		
6	16MPD26	Minor Projects (in-house)	ME	0	0	5	0	5		
	Total			19	1	6	0	26		

Department of Mechanical Engineering M. Tech in Product Design and Manufacturing

LIST OF ELECTIVE COURSES (4 CREDITS)

Elective -2							
16MPD231	Design	of Moulds and Dies	16MPD232/16MCM232	Design of Machine tools			
Elective - 3							
16MPD241	Product	Cost Analysis and	16MPD242	Design for Quality			
	Optimiz	zation					
Elective - 4							
16MPD251/16N	ITE251	Additive Manufacturing	16MPD252	Optimization Techniques			

R. V. College of Engineering, Bengaluru – 59

(An Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi)

Department of Mechanical Engineering

M. Tech in Product Design and Manufacturing

		M.TECH THIR	D SEMS	ESTER				
SL No	Course Code	Course Title	DoS		CREDIT	ALLOCA	ATION	Credita
51. INU.	Course Coue	Course The	D03	L	Т	Р	S	Creans
1	16MPD31	Creative Engineering Design & Analysis (Theory & Practice)	ME	4	0	1	0	5
2	16MPD32X	Elective 5	ME	4	0	0	0	4
3	16MPD33X	Elective 6	ME	4	0	0	0	4
4	16MPD34X	Elective 7	ME	4	0	0	0	4
5	16MPD35	Internship/Industrial	ME	0	0	3	0	3
		Training						
6	16MPD36	Technical Seminar	ME	0	0	2	0	2
		Total		16	0	6	0	22

LIST OF ELECTIVE COURSES (4 CREDITS)

Elective -5								
16MPD321	Product Life cycle	16MPD322	Lean Manufacturing Systems					
	management							
Elective - 6								
16MPD331	Robust Design	16MPD332	Design of Hydraulic and					
			Pneumatic Systems					
	E	lective-7						
16MPD341	System Engineering	16MPD342	Industrial Robotics and					
			Automation					

2016 Scheme & Syllabi

R. V. College of Engineering, Bengaluru – 59

(An Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi)

Department of Mechanical Engineering

M. Tech in Product Design and Manufacturing

M.TECH FOURTH SEMSESTER								
SL No	Course Code	Course Title	BoS	(CREDIT	Creadita		
SI. NO	Course Code			L	Т	Р	S	Creans
1	16MPD41	Major Project	ME	0	0	26	0	26
2	16MPD42	Seminar	ME	0	0	2	0	2
		Total		0	0	28	0	28

PROJECT MANAGEMENT								
Course Code	:	16MEM 11P		CIE Marks	:	100		
Hrs/Week	:	L: T: P: S	3:2:0:0	SEE Marks	:	100		
Credits	:	4		SEE Duration	:	3 Hours		
Course Learni	Course Learning Objectives:							
Students are ab	le t	0						
1. Understand	the	principles and compo	onents of project	management.				
2. Appreciate	the	integrated approach t	o managing proje	ects.				
3. Elaborate th	ne p	rocesses of managing	g project cost and	project procurements.				
4. Apply the p	roj	ect management tools	and techniques.			7 11		
Introductions	Dae	Lisst Duciest menoses	U nit – I	na amana namfalia man		7 Hours		
Introduction:	Pro	ject, Project managel	ment, relationshi	ps among portionio man	age	ement, program		
management, p	mo	ect management, and	organizational program	project management, rep		value role of		
the project manage	ane	ni, operations management	t body of knowle	nzational strategy, bush	1022	value, lole of		
	age	i, project managemer	Init – II	Juge.		8 Hours		
Generation an	d S	Screening of Project	Ideas: Generati	ion of ideas monitoring	r th	e environment		
corporate appra	isa	l. scouting for project	t ideas, prelimina	ry screening, project rat	ing	index. sources		
of positive net	ores	sent value. Project cos	sting.	, seree	8			
Project Scope	Ma	nagement: Project so	cope managemen	t, collect requirements d	efir	e scope, create		
WBS, validate	sco	pe, control scope.	1 0	, 1		1 /		
Organizationa	l i	influences & Proj	ect life cycle:	Organizational influe	ence	es on project		
management, p	roje	ect state holders & gov	vernance, project	team, project life cycle.				
		U	nit – III			7 Hours		
Project Integr	ati	on Management: De	evelop project cl	harter, develop project	mai	nagement plan,		
direct & manag	ge p	roject work, monitor	& control projec	t work, perform integrat	ed o	change control,		
close project or	ph	ase.				_		
Project Quali	ty	management: Plan	quality manager	nent, perform quality	assı	arance, control		
quality.		TT				7.11		
Ducient Dials N	1	U a gamanta Dian mala m	$\frac{\mathbf{n}\mathbf{i}\mathbf{t} - \mathbf{I}\mathbf{v}}{\mathbf{v}}$	tifu mialua manfanna avalit		7 Hours		
Project Risk iv		agement: Plan fisk if	rials recourses	ntrol ricks, periorin quant	auv	e fisk analysis,		
Project Schod	atr	e fisk analysis, plan i	ntsk resources, co	ntroi risk.	aar	nant Different		
scheduling tech	um nio	ig: Project implement	tion method DI N	A concepts Project life	iger	a costing		
scheduning tech	mg	ues, Resources anoca	llion meulou, FLA Linit-V	vi concepts. Fioject me	Jyci	7 Hours		
Tools & Tech	nic	wes of Project Ma	nagement Bar	(GANTT) chart har cl	nart	for combined		
activities logi		liagrams and networ	rks Project eva	luation and review Te	nart Schr	iques (PFRT)		
Planning Com	acuvities, logic diagrams and networks, Project evaluation and review reconfiques (PERT)							
Syllabus inclu		stizea project manage	11101101					
• Case d	des	tutorials for two hou	ur per week:					
 Case discussions on project management Numerical problems on PEPT & CPM 								
Numeri	des isc	tutorials for two hou ussions on project problems on PERT &	ur per week: t management cCPM					
Numeri Comput	des isc cal	tutorials for two hou ussions on project problems on PERT & zed project manageme	ur per week: t management c CPM ent exercises usin	g M S Project Software				

After going through this course the student will be able to

CO1: Explain the process of project management and its application in delivering successful projects.

CO2: Illustrate project management process groups for various project / functional applications.

CO3: Appraise various knowledge areas in the project management framework.

CO4: Develop project plans and apply techniques to monitor, review and evaluate progress for different types of projects.

Reference Books:

- 1. Project Management Institute, "A Guide to the Project Management Body of Knowledge (PMBOK Guide)", 5th Edition, 2013, ISBN: 978-1-935589-67-9
- 2. Harold Kerzner, "Project Management A System approach to Planning Scheduling & Controlling", John Wiley & Sons Inc., 11th Edition, 2013, ISBN 978-1-118-02227-6.
- 3. Prasanna Chandra, "Project Planning Analysis Selection Financing Implementation & Review", Tata McGraw Hill Publication, 7th Edition, 2010, ISBN 0-07-007793-2.
- 4. Rory Burke, "Project Management Planning and Controlling Techniques", John Wiley & Sons, 4th Edition, 2004, ISBN: 9812-53-121-1

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η	М	Μ		М	Н	Η	Н		Н	
CO2		Μ			Μ	Н	Н	Н	L	Н	
CO3		М	Н		М	Н	Η	Н	Н	Н	М
CO4	Μ	Н	Μ	L	Н	Н	Н	Н		Н	Н

	PSO1	PSO2
CO1		М
CO2		L
CO3	L	М
CO4	М	L

	PROBABILITY AND STATISTICS FOR ENGINEERS									
Course Code	:	16MAT12B		CIE Marks	:	100				
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100				
Credits	:	4		SEE Duration	:	3 Hrs				
Course Learni	ng	Objectives (CLO):	I	L		L				
 The students shall be able to: Understand the fundamental concepts of Probability theory and statistics. Identify probability distributions encountered in real life situations and use the concepts of random variables to solve simple problems. Apply appropriate statistical tools for analysing a specific set of data and relationship between two variables. Conduct hypothesis tests and build confidence intervals to reach conclusions about population mean and standard deviation based on single set of data. Data Summary and Presentation: Tabular and Graphical display: Stem and Leaf diagrams, Histograms, Box plots, Radar diagrams. Fundamentals of Probability Theory: Sample spaces and Events, Interpretations of probability, Addition rule, Conditional probability, Multiplication and Total probability rules, Independence, Bayes' theorem. 										
		Un	uit — II			10 Hrs				
Random Varia continuous ran random variab Applications.	abl doi les,	es and Discrete probal n variables. Probability Discrete uniform distr	bility Distributio y distributions a ribution, Binomir	ons: Random Variab nd mass functions, nal distribution, Poi	oles, Ex ssoi	Discrete and pectations of distribution,				
		Uni	it – III			09 Hrs				
Continuous Pr Normal approx	ob a ima	ability Distributions: Control to the second strength of the second	ontinuous Uniforr 1g, Gamma, Weib	n distribution, Norm ull distributions, Ap	al d plica	istribution, ations.				
		Un	it – IV			10 Hrs				
Joint Probabi	lity	and Estimation theory	ry: Marginal pro	bability distribution	ns, İ	Independence,				
Covariance and correlation, Numerical Problems. Sampling distribution, Central Limit Theorem, Sampling distribution of means.										
		Un	nit – V			09 Hrs				
Statistical Infe the mean of a population, Tes	rer pop ting	tce for a single sample: ulation (variance known g for Goodness of fit.	Hypothesis testin and unknown),	ng, Confidence inter Inference on the var	vals ianc	, Inference on e of a normal				

After going through this course the student will be able to:

- CO1: Understand the fundamental concepts of probability theory, statistics and commonly used probability distributions.
- CO2: Identify joint distributions and calculate the different moments in addition to establishing goodness of fit.
- CO3: Apply random phenomena, joint distribution and sampling theory to solve the problems in field of mechanical Engineering.
- CO4: Analyze the physical problem to establish mathematical model and use appropriate method to solve

Reference Books:

- 1. Douglas C Montgomery, George C Runger, "Applied statistics and Probability for Engineers", Wiley, Asia Student Edition, 4th Edition, 2007, ISBN: 978-81-265-2315-3.
- 2. Richard I Levin, David S Rubin, "Statistics for Management", Prentice Hall India, 7th Edition, 1997, ISBN: 9780134762920.
- 3. Walpole, Myers, Myers, Ye, "Probability and Statistics for Engineers and Scientists", Pearson Education Inc., 8th Edition, 2007, ISBN: 978-81-317-1552-9.
- 4. Purna Chandra Biswal, "Probability and Statistics", PHI Learning Private Limited, Eastern Economy Edition, 2007, ISBN: 978-81-203-3140-2.

Scheme of Continuous Internal Evaluation (CIE):

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE):

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L	Н		L							
CO2		Н	L	М							
CO3	Μ		L	Μ							
CO4		L		L				L			

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	L	L
CO2		М
CO3	М	
CO4	L	

INDUSTRIAL DESIGN AND ERGONOMICS										
		(Theory ar	nd Practice)		1					
Course Code	:	16MDP13		CIE Marks	:	100+50				
Hours /Week	:	L:T:P:S	4:0:2:0	SEE Marks	:	100+50				
Credit	:	5		SEE Duration	:	3+3 Hours				
Course Learning Objective	es (C	LO):								
Student shall be able to	c	1 6 4		11.						
1. Understand the importance of human factors in industrial design.										
2. Analyze the effect of display size, shape, color and function in industrial products										
3. Apply the concepts of interfacing man to machine in product design										
4. Evaluate products for its	iunci	Unit - I	ics and aesu	ieucs		10Hrs				
Introduction: An approach	to i	odustrial desi	an alamant	e of design struct	11110	a for industrial				
design in engineering applic	ation	in modern m	gii -ciciliciii anufacturino	s of design shuch	ur	5 IOI muusutat				
Ergonomics and Industria		sign. Introdu	ction -gener	ral approach to th	ne	man- machine				
relationship- workstation de	sign-v	working posit	ion.	fur upprouen to t	10	main maenine				
		Unit -II	10111			10Hrs				
Control and Displays: Sha	pes a	and sizes of v	arious contr	ols and displays-	nu	ltiple, displays				
and control situations - design	gn of	major contro	ls in automo	biles, machine to	ols	etc., design of				
furniture -redesign of instruments.										
		Unit -III				10Hrs				
Ergonomics and Production: ergonomics in automated systems expert systems for										
ergonomic design. Anthropometric data and its applications in ergonomic design- limitations										
of anthropometric data, use	of con	mputerized da	tabase. Case	e study		8				
· · · · · · · · · · · · · · · · · · ·		Unit-IV		2		8Hrs				
Visual Effects of Line and	For	m : The mech	anics of see	eing- psychology	of	seeing general				
influences of line and form	. Col	or: Color and	d light -colo	or and objects- co	lor	and the eye -				
color consistency- color tern	ns- re	actions to col	or on engine	eering equipments	•					
		Unit-V				10Hrs				
Aesthetic Concepts: Conce	ept of	f unity- conce	ept of order	with variety -co	nc	ept of purpose				
style and environment. A	esthe	tic expression	ns. Style-co	omponents of sty	/le	- house style,				
observation style in capital g	oods	, case study.								
Industrial Design in Prac	etice:	General desi	ign -specify	ing design equip	me	nts- rating the				
importance of industrial desi	gn -1	ndustrial desig	gn in the des	sign process.						
		Unit-VI ((Practice)							
1. Fatigue measurement i	n hu	man being usi	ng Blood pr	essure as paramet	er					
2. Fatigue measurement i	n hu	man being usi	ng Sp O_2 as	parameter						
5. Faligue measurement		f anthronom	$\log CO_2$ as p	standing position						
4. Measurement and anal	y515 (of anthronom	etric data in	standing position.						
6 Assessment of force ex	ysis (verter	d by human ac	stuators	sitting position.						
7. Operational Test using		nd level mete	r. Lux meter	r. Infrared thermo	me	ter in different				
work environments	, 500	na iever mete	i, Lux mete	, minurea merino	inc	ter in anterent				
8. Evaluation of the effect	t of l	ight intensity	on human e	fficiency at work	env	vironment.				
9. Experiments on cognit	ive e	rgonomics		-	_					

10. Measurement of local muscle activity using EMG.

Course Outcomes:

After going through the course the students will be able to:

CO1. Explain the importance of ergonomics and aesthetics in industrial product design

CO2. Apply industrial design methodology while designing new products.

CO3. Analyze the man-machine interface and the effect of environment on working efficiency of human beings.

CO4. Design products with improved functions, ergonomics and aesthetics.

Reference Books

- 1. Mayall W.H., "Industrial Design for Engineers", London Hiffee Books Ltd., 1988, ISBN 978-1-118-02227-6.
- 2. Brain Shakel (Edited), "Applied Ergonomics Hand Book", Butterworth Scientific,1988. ISBN 123-1-118-027-6
- 3. R. C. Bridger, "Introduction to Ergonomics", McGraw Hill Publications, 1995, ISBN 215-8-02227-6.
- 4. Sanders & McCormick, "Human Factor Engineering", McGraw Hill Publications,6th edition, 2002, ISBN 815-118-02227-6.

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

mapp	Mapping of Course Outcomes (CO) to Hogram Outcomes (TO)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η	Н	Η		Μ	Μ	Μ		Μ		
CO2	Н	Н	Н	Н	М	Н	Н	М	М		М
CO3	Μ	Н	Μ	Μ	L	L	L	М	Μ		М
CO4	Н	Н	Н	Н	Н	Н	Μ	М	М		М

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

Mapping of Course Outcomes (CO) to Program Specific Outcomes (PSO)

	PSO1	PSO2
CO1	Н	L
CO2	М	М
CO3	L	Н
CO4	Н	Н

2016 Scheme & Syllabi

	N	ATERIALS AND	PROCESSES	S FOR DESIGN					
Course Code	:	16MPD14		CIE Marks	:	100			
Hours /Week	:	L:T:P:S	4:0:0:1	SEE Marks	:	100			
Credit	:	5		SEE Duration	:	3 Hours			
Course Learning	Obje	ectives:							
Student shall be al	ole to)							
(1) Explain the pro	perti	es of different mater	ials and manuf	acturing process					
(2) Apply the man	ufact	uring process based	on material and	d product					
(3) Distinguish bet	weer	the manufacturing	processes for p	olymers, metals and	d ceram	nics			
(4) Evaluate the de	sign	considerations based	l on material &	z process					
		Unit	: - I			10Hrs			
Thermoplastic Po	lyme	ers & Its Manufactu	uring Processe	es		I			
Polyethylene, Poly	/prop	ylene, Polystyrene,	Polyester, Po	lyvinyl Chloride, A	Acrylic,	Polyamides,			
Polycarbonates, I	Revie	w of Properties,	Extrusion pr	rocess, injection i	nouldir	ng process,			
compression moule	ding	and blow moulding	process, Applic	cations of thermopla	stics				
		Unit	-II			10Hrs			
Thermoset Polym	ers &	& Manufacturing P	rocesses for C	composites					
Epoxy resins, Poly	ester	Resins, Vinyl Ester	s Resin, High	Temperature Resin	systems	s (PMR-15),			
Hand layup, Vacu	ım B	aggging, Thermal C	uring, Resin T	ransfer Mouding, A	uto-Cla	ve Filament			
Winding and pultru	sion	Process							
Rule of mixture-	densi	anical Analysis	ateral and Lo	ngitudinal Modulus	Illtin	nate Tensile			
Strength, Compli	ance	and Stiffness ma	trix for 2D	lamina, and ang	le lam	ina. design			
considerations for	selec	tion of material and	process, nume	rical	•	,			
		Unit	-III			10Hrs			
Die Casting Proce	esses								
Die casting allov	s. cl	assification of cast	ings. hot and	cold chamber pre	essure	die casting.			
investment casting	, hor	izontal and vertical	machines, feed	system layout, Sing	gle and	multicavity			
moulds, inspection	of ca	asting, defects in cas	tings, numeric	al on mould design.		-			
Powder Metallurg	gy Pr	ocesses							
Metallic powders	– sy	nthesis – ball millir	ng, spray proce	ess, atomization, an	d chara	acterization,			
preparation of gre	en c	ompact, pressureles	s and pressure	e-assisted sintering,	finishi	ng process,			
applications of PM	, nun	nerical on PM mould	d design,			I			
		Unit	-IV			10Hrs			
Ceramic Materia	IS &]	Processing Technol	ogies		р ·				
Ceramic materials	- Si	ilicate & Non-silica	ite Ceramics,	Alumina, Zirconia;	Pressi	ng, casting,			
extrusion of cera	mics,	role of additives,	industrial, de	omestic and medic	al app	lications of			
ceramics		Unit	·V			OUrc			
Materials & Proc	ecc f	UIII or Design	v			91115			
Introduction Nat	ure ure	of the Selection	Process Ana	lysis of the Mat	erial I	Performance			
Requirements and	Requirements and Creating Alternative Solutions Initial Material Screening of Solutions								
Comparing and R	ankir	ng Alternative Mate	rials, Design	Considerations for	Cast C	Components,			

Molded Plastic Components, Powder Metallurgy Parts, Detail Design and Selection of Materials and Processes.

Self study

The student will have to choose a topic of his/her interest within the scope of the course and pursue a study in that domain. This will be for 20 marks which will be evaluated in TWO phases by a committee consisting of two faculty members including the course faculty. The student has to demonstrate his/her capability of understanding, analyzing and applying the knowledge to solve problems. The study could be a theoretical one involving simulation and analysis or could be an experimental one or even involve building a prototype system.

Course Outcomes:

CO1: Explain the properties of different materials ,composites manufacturing processes.

CO2;Select the manufacturing process based on material and product

CO3:Distinguish between processes of design for polymers, metals and ceramics

CO4:Evaluate the design considerations based on material & process

Reference Books

- (1) Autar Kaw, "Mechanics of Composite Materials", Taylor & Francis, ISBN 8870-1-118-02227-6.
- (2) A K Sinha, "Powder Metallurgy", 2nd Edn, Dhanpath Rai Publications, ISBN 1-118-04527-6.
- (3) Do Ehler H A, "Die Casting", McGraw Hill Publications, ISBN 1056-1-118-06.
- (4) Phillippe Boch, "Ceramic Materials & Process", 2010, Wiley Publication, ISBN 1-118-02425-8

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1		М	Μ	Н		Н	L				
CO2	L		L				L		М		
CO3		М			М					L	
CO4	L	Н	Н	Н		Н	L		Н		L

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1		М
CO2		L
CO3	М	
CO4	Н	L

DESIGN FOR MANUFACTURE (Elective Group 1)										
Course Code	:	16MPD151	(LICC	CIE Marks	:	100				
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100				
Credits	:	04		SEE Duration	:	3 Hours				
Course Learni	ng (Objectives (CI	L O):							
Student shall be able to										
1. Understand the concepts of Geometric dimensioning and Tolerances in Engineering drawing										
2. Analyse the process capabilities and datum features in various components										
3. Evaluate the	e de	esign considera	ations of ca	asting, injection moulding,	die	casting and	powder			
metallurgical co	omp	onents	a a bining a a	avenue and measure nonemati	-					
4. Estimate the	asse	emoly limits, in	lachining se	requence and process paramete	ers		10Urg			
							Concert			
Selection of m	iate	erials for proc	esses: Intro	oduction, Advantages of ap	ply:	ing DFMA,	General			
Process canability	i ei	arry materials	tas materia	s selection by Membership fi	unct	ion modifice	tion and			
dimensionless r	ank	ing computer	hased prima	ry process/material selection			uion anu			
dimensioniess is	ann	ing, computer (oused prima	iry process, material selection	L					
			Unit	– II			10Hrs			
Engineering D	esi	gn features. –	Dimension	ing, General Tolerance, As	sem	bly limits, a	chieving			
larger machinin	g to	olerances, Screv	w threads, C	Ground surfaces, holes. Prob	lem	s. Datum fe	atures –			
Functional datu	m , 1	Machining sequ	uence, manu	ifacturing datum, changing th	he d	atum. Examj	ples			
Unit – III 10Hrs										
Component design – Casting Considerations – Pattern, Mould, parting line, cast holes.										
Component de	esig	n – Casting	Unit - Considera	- III itions – Pattern, Mould, p	oarti	ng line, cas	10Hrs st holes,			
Component de machined holes	esig 8, io	n – Casting dentifying part	Unit - Considera ing line, sp	- III tions – Pattern, Mould, p becial sand cores, designing	oarti g to	ng line, cas obviate san	10Hrs st holes, d cores.			
Component de machined holes Examples, Desi	esig s, ic gn	gn – Casting dentifying part for Injection N	Unit - Considera ing line, sp Molding – I	- III ations – Pattern, Mould, p becial sand cores, designing Injection molding materials,	oarti g to Mol	ng line, cas obviate san lding cycle, S	10Hrs st holes, id cores. Systems,			
Component de machined holes Examples, Desi machine size, cy	esig 5, io gn ycle	gn – Casting dentifying part for Injection M e time, cost esti	Unit - Considera ing line, sp Molding – I mation, Inse	- III tions – Pattern, Mould, p becial sand cores, designing Injection molding materials, ert molding, Design guideling	oarti g to Mol es	ng line, cas obviate san lding cycle, S	10Hrs st holes, id cores. Systems,			
Component de machined holes Examples, Desi machine size, cy	esig s, id gn ycle	gn – Casting dentifying part for Injection M e time, cost esti	Unit - Considera ing line, sp Molding – I mation, Inse Unit -	- III tions – Pattern, Mould, p pecial sand cores, designing Injection molding materials, ert molding, Design guideling - IV	oarti g to Mol es	ng line, cas obviate san lding cycle, S	10Hrsst holes,id cores.Systems,10Hrs			
Component de machined holes Examples, Desi machine size, cy Design for Die	esig s, ic gn ycle cas	gn – Casting dentifying part for Injection M e time, cost esti timg and Powe	Unit - Considera ing line, sp Molding – I mation, Inso Unit - ler metal p	- III tions – Pattern, Mould, p becial sand cores, designing Injection molding materials, ert molding, Design guideling - IV rocessing – Die casting allog	oarti g to Mol es ys, c	ng line, cas obviate san lding cycle, s cycle, machir	10Hrsst holes,id cores.Systems,10Hrsnes, dies,stages			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse	esig s, ic gn ycle cas emb	gn – Casting dentifying part for Injection M e time, cost esti sting and Powe bly techniques, taristics Toolin	Unit - Considera ing line, sp Molding – I mation, Inse Unit - der metal p , Design p	- III tions – Pattern, Mould, p pecial sand cores, designing Injection molding materials, ert molding, Design guideling - IV rocessing – Die casting allow principles, Powder metallu	oarti g to Mol es ys, c rgy	ng line, cas obviate san lding cycle, s cycle, machir processing,	10Hrsst holes,id cores.Systems,10Hrsnes, dies,stages,			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha	esig s, io gn ycle cas emb	gn – Casting dentifying part for Injection M e time, cost esti timg and Powe oly techniques, teristics, Toolin	Unit - Considera ing line, sp Molding – I mation, Inse <u>Unit -</u> der metal p , Design p ng, Sintering	- III tions – Pattern, Mould, p becial sand cores, designing Injection molding materials, ert molding, Design guideling - IV rocessing – Die casting allog principles, Powder metallu g, Design guidelines - V	oarti g to Mol es ys, c rgy	ng line, cas obviate san lding cycle, s cycle, machir processing,	10Hrsst holes,d cores.Systems,10Hrsnes, dies,stages,8Hrs			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha	esig s, io gn ycle cas emb ract	gn – Casting dentifying part for Injection M e time, cost esti sting and Powe ly techniques, teristics, Toolin	Unit - Considera ing line, sp Molding – I mation, Inse Unit - der metal p , Design p ng, Sintering Unit	- III tions – Pattern, Mould, p pecial sand cores, designing Injection molding materials, ert molding, Design guideling - IV rocessing – Die casting alloy principles, Powder metallu g, Design guidelines - V f dimensioning. Straightness	oarti g to Mol es ys, c rgy	ng line, cas obviate san lding cycle, s cycle, machir processing,	10Hrsst holes,id cores.Systems,10Hrsnes, dies,stages,8HrsRun-out			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha GD&T – Sym Location Tolera	esig s, ic gn ycle cas emb ract	gn – Casting dentifying part for Injection M e time, cost esti ting and Powe ly techniques, teristics, Toolir s, Three datum	Unit - Considera ing line, sp Molding – I mation, Inse Unit - der metal p , Design p ng, Sintering Unit n concept of parts havin	- III tions – Pattern, Mould, proceeding and cores, designing Injection molding materials, ert molding, Design guideling - IV rocessing – Die casting allog principles, Powder metallug g, Design guidelines - V f dimensioning, Straightness g concentric cylinders, Cont	ys, co	ng line, cas obviate san lding cycle, S cycle, machir processing, ncentricity, 1	10Hrsst holes,d cores.Systems,10Hrsnes, dies,stages,8HrsRun-out,ration by			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha GD&T – Sym Location Tolera true position,	esig s, ic gn ycle cas emb ract bol	gn – Casting dentifying part for Injection M e time, cost esti sting and Powe ly techniques, teristics, Toolin s, Three datum e, Assembly of dy of revoluti	Unit - Considera ing line, sp Molding – I mation, Inse Unit - der metal p , Design p ng, Sintering Unit n concept of parts havin on, Round	- III tions – Pattern, Mould, processing and cores, designing Injection molding materials, ert molding, Design guideling - IV rocessing – Die casting allow principles, Powder metallu g, Design guidelines - V f dimensioning, Straightness g concentric cylinders, Continess, Profile dimensioning,	parti g to Mol es ys, c rgy	ng line, cas obviate san lding cycle, S cycle, machir processing, ncentricity, 1 of feature loc	10Hrsst holes,d cores.Systems,10Hrsnes, dies,stages,8HrsRun-out,cation byof two			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha GD&T – Sym Location Tolera true position, diameters. Exam	esig s, ic gn ycle cas emb ract bol unce Boo	gn – Casting dentifying part for Injection M e time, cost esti sting and Powe bly techniques, teristics, Toolin s, Three datum e, Assembly of dy of revoluti es.	Unit - Considera ing line, sp Molding – I mation, Inse Unit - der metal p , Design p ng, Sintering Unit n concept of parts havin on, Round	 III Itions – Pattern, Mould, proceeded and cores, designing injection molding materials, ert molding, Design guideline IV rocessing – Die casting allog principles, Powder metallug, Design guidelines -V f dimensioning, Straightness g concentric cylinders, Continues, Profile dimensioning, Straightness 	ys, corrol c	ng line, cas obviate san lding cycle, S cycle, machir processing, ncentricity, I of feature loc apers, Shaft	10Hrsst holes,d cores.Systems,10Hrsnes, dies,stages,8HrsRun-out,cation byof two			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha GD&T – Sym Location Tolera true position, diameters. Exam	esig s, ic gn ycle cas cas cas bol noce Boo nplo nes	gn – Casting dentifying part for Injection M e time, cost esti sting and Powe ly techniques, teristics, Toolin s, Three datum e, Assembly of ly of revoluti es.	Unit - Considera ing line, sp Molding – I mation, Inse Unit - der metal p , Design p ng, Sintering Unit n concept of parts havin on, Rounda	 III Itions – Pattern, Mould, processial sand cores, designing injection molding materials, ert molding, Design guideling IV rocessing – Die casting allog principles, Powder metallug, Design guidelines V f dimensioning, Straightness g concentric cylinders, Continuess, Profile dimensioning, Straightness 	oarti g to Mol es ys, c rgy , co rol c	ng line, cas obviate san lding cycle, S cycle, machir processing, ncentricity, 1 of feature loc apers, Shaft	10Hrsst holes,d cores.Systems,10Hrsnes, dies,stages,8HrsRun-out,cation byof two			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha GD&T – Sym Location Tolera true position, diameters. Exam Course Outcom	esig gn ycle cas emb ract bol unce Boo nplo nes bougl	gn – Casting dentifying part for Injection M e time, cost esti sting and Powe bly techniques, teristics, Toolin s, Three datum e, Assembly of dy of revoluti es. : h this course the	Unit - Considera ing line, sp Molding – I mation, Inse Unit - der metal p , Design p ng, Sintering Unit n concept of parts havin on, Rounda	- III tions – Pattern, Mould, proceed and cores, designing Injection molding materials, ert molding, Design guideline - IV rocessing – Die casting allog principles, Powder metallug g, Design guidelines - V f dimensioning, Straightness g concentric cylinders, Contra ness, Profile dimensioning, ill be able to:	ys, c ys, c ys, c ys, c rgy	ng line, cas obviate san lding cycle, s cycle, machir processing, ncentricity, 1 of feature loc apers, Shaft	10Hrsst holes,d cores.Systems,10Hrsnes, dies,stages,8HrsRun-out,cation byof two			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha GD&T – Sym Location Tolera true position, diameters. Exam Course Outcom After going thro CO1: Explain	esig gn ycle cas emb ract bol unce Boo nplo nes ougl	gn – Casting dentifying part for Injection M e time, cost esti sting and Powe oly techniques, teristics, Toolir s, Three datum e, Assembly of dy of revoluti es. : h this course the design princir	Unit - Considera ing line, sp Molding – 1 mation, Inse Unit - der metal p , Design p ng, Sintering Unit n concept of parts havin on, Rounda	- III tions – Pattern, Mould, proceeded and cores, designing lajection molding materials, ert molding, Design guideling - IV rocessing – Die casting allow principles, Powder metallu g, Design guidelines - V f dimensioning, Straightness g concentric cylinders, Contriness, Profile dimensioning, ill be able to: to various manufacturing	parti g to Mol es ys, c rgy , co rol c , Ta	ng line, cas obviate san lding cycle, S cycle, machir processing, ncentricity, I of feature loc apers, Shaft	10Hrsst holes, id cores.Systems,10Hrsnes, dies, stages,8HrsRun-out, cation by of two			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha GD&T – Sym Location Tolera true position, diameters. Exam Course Outcom After going thro CO1: Explain methods	esig s, ic gn ycle cas emb ract bol unce Boo nplo nes ougl	gn – Casting dentifying part for Injection M e time, cost esti sting and Powe bly techniques, teristics, Toolin s, Three datum e, Assembly of dy of revoluti es. : h this course the design princip	Unit - Considera ing line, sp Molding – I mation, Inse Unit - der metal p , Design p ng, Sintering Unit n concept of parts havin on, Round e student win ples related	- III tions – Pattern, Mould, proceed a sand cores, designing Injection molding materials, ert molding, Design guideline - IV rocessing – Die casting allow principles, Powder metallug principles, Powder metallug	parti g to Mol es rgy ys, c rgy rol c , Ta	ng line, cas obviate san lding cycle, S cycle, machir processing, ncentricity, I of feature loc apers, Shaft	10Hrsst holes,d cores.Systems,10Hrsnes, dies,stages,8HrsRun-out,cation byof two			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha GD&T – Sym Location Tolera true position, diameters. Exam Course Outcom After going thro CO1: Explain methods CO2: Apply the	esig gn ycle cas emb raction bol noce Boo nplo nes ougl the	gn – Casting dentifying part for Injection M e time, cost esti- sting and Powe ly techniques, teristics, Toolin s, Three datum e, Assembly of dy of revoluti es. : h this course the design princip	Unit - Considera ing line, sp Molding – 1 mation, Inse Unit - der metal p , Design p ng, Sintering Unit n concept of parts havin on, Rounda e student win ples related	- III tions – Pattern, Mould, processing – Pattern, Mould, processing stand cores, designing Injection molding materials, ert molding, Design guideling - IV rocessing – Die casting allog principles, Powder metallung principles, Powder met	parti g to Mol es ys, c rgy , co rol c , Ta proc	ng line, cas obviate san lding cycle, S cycle, machir processing, ncentricity, I of feature loc apers, Shaft cesses and a	10Hrsst holes, d cores.Systems,10Hrsnes, dies, stages,8HrsRun-out, cation by of twoassembly cance for			
Component de machined holes Examples, Desi machine size, cy Design for Die finishing, Asse compaction cha GD&T – Sym Location Tolera true position, diameters. Exam Course Outcom After going thro CO1: Explain methods CO2: Apply the engineeri	esig gn ycle cas emb ract bol bol bol bol nee Boo nple nes ougl the	gn – Casting dentifying part for Injection M e time, cost esti sting and Powe oly techniques, teristics, Toolin s, Three datum e, Assembly of dy of revoluti es. the this course the design princip	Unit - Considera ing line, sp Molding – I mation, Inse Unit - der metal p , Design p ng, Sintering Unit n concept of parts havin on, Rounda e student wi ples related	- III tions – Pattern, Mould, proceed a sand cores, designing Injection molding materials, ert molding, Design guideling - IV rocessing – Die casting allow principles, Powder metallug principles, Powder metallug	parti g to Mol es ys, c rgy s, co rol c , Ta proc	ng line, cas obviate san lding cycle, S cycle, machir processing, ncentricity, I of feature loc apers, Shaft cesses and a lls and toler	10Hrsst holes, id cores.Systems,10Hrsnes, dies, stages,8HrsRun-out, cation by of twoassembly rance for			

CO	3: Evaluate the assembly limits, general tolerances and process parameters
CO	4: Develop the appropriate material and machining sequence for manufacturing processes
Ref	erence Books:
1.	Geoffrey Boothroyd, Peter Dewhurst, Winston Knight Marcel Dekker, Inc.,"Product Design for
	Manufacture and Assembly", –Newyork - Second Revision, ISBN 0-8247-0584-X
2.	Harry Peck," Designing for Manufacturing", Pitman Publications, 1983, ISBN: 1-85233-810-5
3.	Merhyle F Spotts, Englewood Cliffs, "Dimensioning and Tolerance for Quantity Production" Prentice
	Hall, 5th edition, ISBN: 2-95433-956-3

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η		Η	Μ		Η	L				
CO2		Η	Μ	Μ			L	L	М		L
CO3		Η	Η	L	Μ			L		L	
CO4		Μ	Н	Η		Η	L		Н	М	L

	PSO1	PSO2
CO1		М
CO2		L
CO3	М	М
CO4	Н	L

SIMULATION OF MANUFACTURING SYSTEMS								
(Elective Group 1)								
Course Code	:	16MPD152		CIE Marks	:	100		
Hours /Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100		
Credit	:	4		SEE Duration	:	3 Hours		
Course Learning Ob	jectiv	ves:						
Student shall be able to	С							
1. Explain a gi	ven	engineering s	ystem in ter	ms of purpose, par	ramet	ers, constraints,		
performance re	quire	ements, subsyst	tems, intercor	nections and environ	nmen	tal context.		
2. Analyse a m	odelii	ng strategy for	r a real worl	d engineering syste	m by	integrating sub-		
system models								
3. Apply a mode	l to fa	acilitate engine	eering decision	on making and predi	cted	advantages over		
alternative mod	lels.							
4. Evaluate the si	mula	tion results of	an engineerir	ng system model, wi	thin t	he context of its		
capabilities and	1 11111	tations, to add	ress critical is	sues in an engineering	ng pro	oject		
		Ur	nit - 1			I0Hrs		
Principles of Comput	ter M	lodeling And S	Simulation					
Monte Carlo simula	tion.	Nature of c	omputer- mo	odeling and simula	tion.	Limitations of		
simulation, areas of ap	plica	tions.						
System and Environ	nent							
Components of a syst	tem -	discrete and c	continuous sy	stems, Models of a	syste	m -a variety of		
modeling approaches.								
		Un	ut -11			9Hrs		
Discrete Event Simul	ation	l cimenal official and o		an waina awant asha	J 1	- single shownal		
Concepts in discrete e	vent	simulation, ma	inual simulati	on using event sched	Junna	<i>y</i> , single channel		
queue, two server que	ie, si	linulation of in	ventory probl	em.				
Discrete distributions	51111u conti	nuous distribu	tions					
	conti	Iluous uisuituu	10115. ;+ TTT			10Urg		
			11 -111			101115		
Random Number Ge	nerat	tion						
Techniques for gener	ating	random numb	pers- Mid squ	uare method -the m	od pi	oduct method -		
Constant multiplier teo	chniq	ue -Additive c	ongruential m	iethod -Linear congr	uentia	al method - Tests		
for random numbers -	for random numbers -The Kolmogorov-Smirnov test -the Chi-square test.							
Kandom Variable (fe				1				
	enera	tion	. 1 1	1	1	1 / 1 1		
Inversion transforms	enera teo	tion chnique-expon	ential distri	bution. uniform	distri	bution, weibul		
Inversion transforms distribution, continuou	enera teo s dist	tion chnique-expon tribution, gener	ential distri	bution. uniform imate normal variate	distri s-Erla	bution, weibul ang distribution.		
Inversion transforms distribution, continuou	enera teo s dist	tion chnique-expon tribution, gener <u>Un</u>	ential distri rating approx it-IV	bution. uniform imate normal variate	distri s-Erli	bution, weibul ang distribution. 10Hrs		
Inversion transforms distribution, continuou Empirical Discrete D	enera s teo is dist istrik	tion chnique-expon tribution, gener Un oution	ential distri rating approx it-IV	bution. uniform imate normal variate	distri	bution, weibul ang distribution. 10Hrs		
Inversion transforms distribution, continuou Empirical Discrete D Discrete uniform -dist	enera s teo is dist istrik ributi	tion chnique-expon tribution, gener Un oution on poisson dis	ential distri rating approx it-IV tribution -geo	bution. uniform imate normal variate ometric distribution -	distri s-Erla accej	bution, weibul ang distribution. 10Hrs otance -rejection		
Inversion transforms distribution, continuou Empirical Discrete D Discrete uniform -dist technique for Poisson	enera s teo s dist istrik ributi distri	tion chnique-expon tribution, gene Un oution on poisson dis bution gamma	ential distri rating approx it-IV tribution -geo distribution.	bution. uniform imate normal variate metric distribution -	distri s-Erla accej	bution, weibul ang distribution. 10Hrs ptance -rejection		
Inversion transforms distribution, continuou Empirical Discrete D Discrete uniform -dist technique for Poisson	enera s teo is dist istrik ributi distri	tion chnique-expon tribution, gener Un oution on poisson dis bution gamma Un	ential distri rating approx it-IV tribution -geo distribution. iit-V	bution. uniform imate normal variate metric distribution -	distri s-Erla accej	bution, weibul ang distribution. 10Hrs ptance -rejection 10Hrs		
Inversion transforms distribution, continuou Empirical Discrete D Discrete uniform -dist technique for Poisson Design and Evaluation variance reduction to	enera s teo is dist istrik ributi distri on Of	tion chnique-expon tribution, gener Un oution on poisson dis bution gamma Un Simulation E	ential distri rating approx it-IV tribution -geo distribution. it-V xperiments	bution. uniform imate normal variate ometric distribution -	distri s-Erla accej	bution, weibul ang distribution. 10Hrs ptance -rejection 10Hrs		

After going through this course the student will be able to:

- CO1. Explain elementary tools of modeling of mechanical, electrical, fluid, and thermo fluid Systems.
- CO2. Discuss real-world systems to which modeling and analysis tools are applied.
- CO3. Evaluate basic concepts in numerical integration and computer simulation of Mathematical models.
- CO4: Apply decision-making skills needed to devise models that adequately represent relevant behaviors yet remain simple.

Reference Books

- Jerry Banks & John S Carson II, "Discrete Event System Simulation", Prentice Hall Inc.-1984., ISBN: 57:04577-02-0253
- 2. Gordan. G, "Systems Simulation", Prentice Hall India Ltd -1991, ISBN : 52: 02526820001
- 3. Nusing Deo ,"System Simulation With Digital Computer", Prentice Hall of India 1979, ISBN : 42: 025268205011
- 4. Francis Neelamkovil, "Computer Simulation and Modeling", John Wilely& Sons -1987, ISBN : 57:04581-02-0235

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	М	Н	Н	L			М	Μ		L
CO2	Μ	Н	Н	Н	L	L		L		М	L
CO3	Н	М	Μ	L			Μ				Н
CO4	L	Н	L	Μ				L		L	

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	Н	
CO2		L
CO3		М
CO4	М	

		PROFESSIONA	L SKILL DEV	ELOPMENT						
Course Code	:	16HSS16		CIE Marks	:	50				
Hrs/Week	:	L:T:P:S	0:0:4:0	Credits	:	02				
Course Learnin	Course Learning Objectives:									
Students are abl	e t	0								
1. Understan	d t	he importance of verbal	and written com	munication						
2. Improve q	ua	litative and quantitative	problem solving	skills						
3. Apply crit	108	al and logical think proce	ess to specific pro	oblems						
4. Manage st	re	ss by applying stress mai	hagement skills			- TT				
				1 01 '11 0	D	5 Hours				
Communication	n .1-	Skills: Basics of Con	nmunication, Po	ersonal Skills &	Prese	ntation Skills,				
Attitudinal Deve Decume Writing	210 1	pment, Self Confidence,	SWOC analysis	Degume Degume wa	tina	ing Cuidalings				
for better presen	tai	tion of facts.	essentials for a f	esume, Resume wr	lung	tips Guidennes				
1		UN	IT 2			6 Hours				
Quantitative A	v p	titude and Data Ana	lysis: Number	Systems, Math V	ocab	ulary, fraction				
decimals, digit	pla	aces etc. Reasoning and	Logical Aptitud	de, - Introduction to	o puz	zle and games				
organizing infor	m	ation, parts of an argume	ent, common flav	ws, arguments and	assum	ptions. Verbal				
Analogies – intr	o	luction to different ques	stion types – ana	alogies, sentence co	mple	tions, sentence				
corrections, ant	on	yms/synonyms, vocabu	lary building e	tc. Reading Comp	rehen	sion, Problem				
Solving										
		UN	IT 3			4 Hours				
Interview Skill	s:	Questions asked & how	to handle them,	Body language in	interv	iew, Etiquette,				
Dress code in in	tei	rview, Behavioral and te	chnical interviev	vs, Mock interviews	s - M	ock interviews				
with different Pa	ane	els. Practice on Stress In	terviews, Techn	ical Interviews, Ger	eral I	IR interviews				
		UN	IT 4			5 Hours				
Interpersonal	ar	nd Managerial Skills:	Optimal co-e	xistence, cultural	sensi	tivity, gender				
sensitivity; capa	bil	lity and maturity model,	decision making	; ability and analysis	s for t	orain storming;				
Group discussio	n a	and presentation skills;								
		UN	<u>IT 5</u>	<u> </u>		4 Hours				
Motivation and		Stress Management: S	self motivation,	group motivation,	leade	ership abilities				
Stress clauses a	nd	stress busters to handle	e stress and de-s	stress; professional	ethic:	s, values to be				
practiced, stand	arc	is and codes to be adop	ted as profession	nal engineers in the	SOC1	ety for various				
projects.		• • • • • •	1.	1 1 1 1		••• • ••				
Note: The resp	ect	ive departments should	discuss case st	udies and standards	s pert	aining to their				
domain										
After going theo	1e:	h this course the student	e will be able to							
After going through this course the students will be able to										
CO2. Applyzor	CO1: Develop professional skill to suit the industry requirement									
CO2. Allaryze	лU Po	dershin and internersona	and reasoning s	N1115						
CO3. Develop I	ud ati	verbal communication	skille with appro	nriate hody languag	re					
	all		skins with applo	priace body languag	, c .					

References

- 1. Stephen R Covey, "The 7 Habits of Highly Effective People", Free Press, 2004 Edition, ISBN: 0743272455
- 2. Dale Carnegie, "How to win friends and influence people", General Press, 1st Edition, 2016, ISBN: 9789380914787
- 3. Kerry Patterson, Joseph Grenny, Ron Mcmillan, "Crucial Conversation: Tools for Talking When Stakes are High", McGraw-Hill Publication, 2012 Edition, ISBN: 9780071772204
- 4. Ethnus, "Aptimithra: Best Aptitude Book", Tata McGraw Hill, 2014 Edition, ISBN: 9781259058738

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in TWO Phases.

Phase	Activity	Weightage
Ι	After 7 weeks - Unit 1, 2 & Part of Unit 3	50%
II	After 12 weeks – Unit 3, 4, 5	50%

CIE Evaluation shall be done with weightage as follows:

Writing skills	10%
Logical Thinking	25%
Verbal Communication & Body Language	35%
Leadership and Interpersonal Skills	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η		L			Η		Н	Н	Н	М
CO2	Н	М	Н						М	Н	М
CO3			L			Η		Н	Н	Н	Н
CO4			Н			Η	L	Н	Н	Н	Н

	PSO1	PSO2
CO1	М	
CO2		L
CO3		L
CO4	Н	

SECOND SEMESTER

		RESEAR	CH METHOI	DOLOGY					
Course Code	:	16MEM21R		CIE Marks	:	100			
Hrs/Week	:	L: T: P: S	3:2:0:0	SEE Marks	:	100			
Credits	:	04		SEE Duration	:	3 Hours			
Course Learning Objectives:									
Students are abl	le to	0							
1. Understand of	of tl	ne underlying principles	of quantitative	e and qualitative researcl	1				
2. Perform the	gap	analysis and identify the	e overall proce	ess of designing a researce	ch s	tudy.			
3. Choose the r	nos	t appropriate research m	ethodology to	address a particular rese	arc	h problem			
4. Explain a ratisfication solutions.	nge	of quantitative and qua	litative approa	aches to analyze data an	d s	uggest possible			
		Uni	it – I			7 Hours			
Overview of R	ese	arch							
Meaning of Res	sear	ch. Types of Research. I	Research and S	Scientific Method. Defin	ing	the Research			
Problem. Resea	rch	Design. Different Resea	arch Designs.	· · · · · · · · · · · · · · · · · · ·	0				
		Uni	t – II			7 Hours			
Methods of Da	ta (Collection	<u> </u>						
Collection of F	rim	nary Data. Observation	Method. Inter	view Method, Collectio	n o	f Data through			
Questionnaires,	Co	ollection of Data through	h Schedules, C	Collection of Secondary	Da	ta, Selection of			
Appropriate Me	etho	od for Data Collection.	,	5		,			
		Unit	i – III			8 Hours			
Sampling Met	hod	S							
Sampling proc	ess.	, Non-probability samp	oling, probabi	lity sampling: simple	ran	dom sampling,			
stratified sampl	ing	, cluster sampling syste	ematic random	sampling, Determination	on	of sample size,			
simple numeric	al p	problems.				_			
		Unit	t – IV			7 Hours			
Processing and	l ar	alysis of Data							
Processing Ope	rati	ions, Types of Analysis,	, Statistics in I	Research, Measures of:	Cer	ntral Tendency,			
Dispersion, As	ym	metry and Relationship,	, correlation a	nd regression, Testing	of	Hypotheses for			
single sampling	g: P	arametric (t, z and F) Cl	hi Square, AN	OVA, and non-parametr	ric 1	tests, numerical			
problems.									
		Un	it-V			7 Hours			
Essential of Re	epo	rt writing and Ethical i	ssues:						
Significance of	Re	port Writing, Different S	Steps in Writin	g Report, Layout of the	Res	earch Report,			
Precautions for	Wı	iting Research Reports.							
Syllabus inclue	les	12 hours of tutorials in	which:						
• Faculty is expected to discuss research methodology for specializations under consideration.									
• Numerical problems on statistical analysis as required for the domains in which students are									
studving	g m	ust be discussed.	J		_				
Statistic	al a	nalysis using MINITAR	/ MatLab and	such other softwares car	ı he	e introduced			
			und						

After going through this course the students will be able to

- CO 1. Explain various principles and concepts of research methodology.
- CO 2. Apply appropriate method of data collection and analyze using statistical methods.
- CO 3. Analyze research outputs in a structured manner and prepare report as per the technical and ethical standards.
- CO 4. Formulate research methodology for a given engineering and management problem situation.

Reference Books:

- 1. Kothari C.R., "Research Methodology Methods and techniques", New Age International, 2004, ISBN: 9788122415223
- 2. Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., "Management Research Methodology", Pearson Education India, 2009 Edition, ISBN:9788177585636
- **3.** Levin, R.I. and Rubin, D.S., "Statistics for Management", 7th Edition, Pearson Education: New Delhi, ISBN-13: 978-8177585841

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ			М				Н		Н	
CO2		L	Н	Н	М	Μ	L	L		М	L
CO3	L	М	Μ	М	Н	Μ	L	М			М
CO4	Н	Н	Н	Н		L	L	М	Н		Н

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	Н	
CO2		L
CO3		Н
CO4	L	

COMPUTER AIDED ENGINEERING							
		(T)	heory and Pr	actice)			
Course Code	:	16MPD22		CIE Marks	:	100+50	
Hours /Week	:	L:T:P:S	4:0:2:0	SEE Marks	:	100+50	
Credit	:	5		SEE Duration	:	3+3 Hours	
Course Learning	Obj	ectives:					
Student shall be at	ole to) a of alamanta an	d b oundomy or	anditions for finite	مامس	ant analyzia	
(1) Understand the (2) Identify 1 D at	e typ	D solutions for		hallions for finite	fror	mag and beams	
(2) Identify $1-D$ and (2) A polyage the base	10 Z-	D solutions for a	components si	ich as bars, trusses	, Irai	mes and beams	
(5) Analyse the near (4) Evolute the set	at tra	nster, Eigen freq	Idency and ax	lant a offician	IS		
(4) Evaluate the co	mpo	nents using ANS	$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} \mathbf{A}$ (Th	ient software			
		ו ו	FAKIA (III)	eory)		10Urs	
Introduction. No.	ad f		$\frac{1}{2}$	luc on cinconina n	mahl	IUTIS ma mothematical	
modeling – discret	eu r	or numerical in	lethous to so	vance and scope of	fini	te element methods –	
engineering applic	catio	ns of FEA. W	eighted resid	ual methods – R	Ravle	eigh Ritz method –	
piecewise continuo	ous t	rial functions –	finite elemen	t method – applic	atior	to bar element and	
beam elements, N	ume	rical integration	- Trapezoid	al rule, Simpson's	1/3	rule, Newton-Cotes	
Formula, Gauss Qu	ladra	ature formula, Ga	auss Quadratu	re in two and three	dim	ensions	
0 0 1	D		Unit -II	<u> </u>		10Hrs	
One Dimensional	Provi	oblems: Elemen	tal equations	for bar element,	qua	dratic element, truss	
– example problem	noxi Is		pinent of sha	be functions – elen	lient	matrices and vectors	
	15	τ	Unit -III			10Hrs	
Two Dimensiona	l Pr	oblems : Three	e noded triar	oular elements –	fou	r noded rectangular	
elements – higher	orde	er elements – ge	neralized coo	rdinates approach	to n	odal approximations.	
natural coordinate	es ai	nd coordinate t	ransformation	ns, iso-parametric	, su	per-parametric, sub-	
parametric element	ts					_	
			T • . TT 7			1011	
Dumanula Duahlan		Economic of a	Unit-IV	lama accesiatant a	. d. 1.,	10Hrs	
for bar and beam	15 :] elem	Formulation of C	iynamic prob	roblems transfo	na iu	tion methods Jacobi	
method. Vector Ite	ratio	n methods, subs	bace iteration	method	/1111a	tion methods, succor	
Heat Transfer P	robl	ems: 1-D eler	nent, steady	state heat transfe	r, oi	ne dimensional heat	
conduction, one dimensional heat transfer in thin fins, problems.							
Unit-V 8Hrs							
Axisymmetric e	lasti	city problems	-Governing	equations for a	axisy	mmetric elasticity,	
AXISYMMETRIC line	ar tri	Einite element	, AXISYMMET	ic lour node 180-pa	rame	euric element.	
problems			ioimuiatioil,	shear and Denullig	5 mc	ment, plane frames,	
riolins							

2016 Scheme & Syllabi

PART B (Practical) Part- I

Introduction to ANSYS, element library, applicability for engineering analysis, analysis of bars, trusses, beams and shafts, static analysis of 2D plates – subject to plane load, bending load and shells with internal pressure

Part-II

Dynamic and Thermal Analysis – Normal modal analysis of beams, bars and truss elements, harmonic analysis of beam structures, conductive, convective and radiative heat transfer problems, coupled field analysis

Course Outcomes:

After going through this course the student will be able to

- CO1. Understand the fundamentals of finite element methods
- CO2. Develop the knowledge to analyse structures in static and dynamic conditions
- CO3. Assess the numerical techniques for solving engineering problems
- CO4. Formulate finite element model to implement industrial projects

Reference Books

- 1. Hutton, "Fundamentals of FEM", Tata McGraw Hill education Pvt. Ltd, 2005, ISBN: 0070601224
- 2. Daryl L Logan, "First Course in Finite element methods", 5th Edition, Thomson Brooks, 2011, ISBN : 10:0495668257
- 3.T R Chandrupatla, A D Belegondu, "Introduction to FE in engineering", 3rd Edition,
- Prentice Hall, 2004, ISBN: 4-44233-810-5

Scheme of Continuous Internal Evaluation (CIE) for Theory

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Continuous Internal Evaluation (CIE) for Practical

CIE for the practical courses will be based on the performance of the student in the laboratory, every week. The laboratory records will be evaluated for 40 marks. One test will be conducted for 10 marks. The total marks for CIE (Practical) will be for 50 marks.

Scheme of Semester End Examination (SEE) for Theory

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE) for Practical

SEE for the practical courses will be based on conducting the experiments and proper results for 40 marks and 10 marks for viva-voce. The total marks for SEE (Practical) will be 50 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η	Μ		L			L			L	
CO2	Μ	Н	Н	Μ	L	L		L			
CO3	Μ	М	Μ			Μ		М	М	М	L
CO4			Н	Н	Н			L		Н	L

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	Н	М
CO2	Н	
CO3	М	М
CO4		L

DESIGN OF MOULDS AND DIES (Elective Group 2)									
Course Code	:	16PDM231	(CIE Marks	:	100			
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100			
Credits	:	4		SEE Duration	:	3Hrs			
Creates • </td									
Cooling Syster cores, cooling e Parting Surfac	n: 1 len es:	Need for coolin nents, baffles, bu Straight, steppe	Unit – II g, cooling solid of bblers etc., and c	cores and cavities, insert coc cooling calculation. surface.	oling	9Hrs , cooling long			
Moulds with E	xte	ernal under Cut	ts: Split moulds,	Actuation of splits, Guiding of	of sp	lits, side cores			
			Unit – III			9Hrs			
Extrusion: Gen conductivity, s property like re crystal growth n co extruded pip	hera hap lax ate e, r	al consideration be & size of g ation time & de e, cooling rate, in nuilt layer pipe,	during extrusion ranular hygrosco fects like shark si npact strength, m foam pipe, biaxia	process like specific heat, la opic nature over temperatur kin, elastic turbulence, influe nanufacturing of woven sacks al oriented pipe	atent re, e ence s etc	t heat, internal effect of flow of TG, TM & . co extrusion,			
			Unit – IV			10Hrs			
 Lamination: Lamination by extrusion coating, twin screw extrusion, co-rotating & counter rotating, feeding mechanism in twin screw extruder, roll of side feeder & injection feeder, principles of compounding, mixing mechanism etc Blow Moulding: Microprocessor / CNC controlled blow moulding machine, injection stretch blow moulding of PET, precut moulding, multi-layer blow moulding, Parission programming. 									
Unit – V 10Hrs									
Special Mould Moulds with le	s:] bos	Form pins Moul e cores, Autom	ds for threaded c atic unscrewing	components: External thread type of moulds, Under fee	s, in d m	ternal threads, oulds, 3 Plate			

moulds, hot runner moulds (Runner less moulds), Multi color moulding tools, Defects in moulding and its remedies, Compression moulding tools, transfer moulding tools. Moulds with internal under cuts, Moulds for threaded components, 3 Plate moulds, hot runner moulds, Multi-color moulding tools, Defects in moulding and its remedies, Compression moulding tools, transfer moulding tools

Course Outcomes:

After going through this course the student will be able to:

- CO1 Understand the different Injection moulding, Extrusion, Lamination, Blow moulding and Special moulding technique.
- CO2 : Analyse the plastic components, and challenges in selection of feed system, ejection, cooling and parting surface.
- CO3: Apply the engineering knowledge for the selection of type of mould for plastic components.
- CO4: Design and evaluate the effects of mould on the component.

Reference Books:

1. Pye. R,. G. W.New York ," Injection Mould Design", John Wiley & Sons, ISBN : 20:04523668257

- 2. Charles A. Harper, "Hand book of Plastic Processes", ISBN 10:0495668257
- 3. Extrusion Berln, ISBN : 60:06668957
- 4. Dallas B.Daniel, "Progressive Dies", Springer publication, 2005. ISBN 8:03953374987

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	L			Н				М	Μ		
CO2										М	
CO3	Μ	М		Н			Μ				L
CO4			Μ		Н			L			

	PSO1	PSO2
CO1	М	
CO2		L
CO3	М	
CO4	Н	

	DESIGN OF MACHINE TOOLS									
Course Code	:	(E) 16MPD232/16MCM	ecuve Group 2)	CIE Marks	:	100				
		232								
Hrs/Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100				
Credits	:	04		SEE Duration	:	3 Hrs.				
Course Learni	ng	Objectives (CLO):								
Student shall be able to										
1. Understand the fundamentals of Machine Tool Design										
2. Demonstrat	e ti	he principles of Machine	Tool Design cond	cepts						
3. Develop the		esign Intricacies								
4. Solve the de 5 Apply the e	esig	gn problems of Machine	1001 na Taol							
5. Apply the c						00 II.mg				
INTRODUCT		UI N. Working and Auvilia	III – I	motora Dofining W	orlei	Uo HIS				
INTRODUCT Machine Teel	IU M	N: WORKING and Auxina	ary Moulon, Para Maahina Taal Di	rives Hudroulie Tre		ing Motion Of				
Flomente Moel	IVI 2017	ical Transmission And It	Elemente Con	rol Poquiromonto I		ut Of Machina				
Tool Aim of Si	1a1	ncal Italishiission Anu n ad and Feed Pate Pegulat	ion	erai Requirements, L	ayo					
		U and Feed Rate Regular.	it – II			10 Hrs				
REGULATIO	N	OR OF SPPED AND FEED	RATES: Stenne	d Regulation of Spee	d I	Design of Feed				
REGULATIO	То	ol Drives Using Multipl	le Speed Motors	Special Cases of (Jean Gean	r Box Design				
Determining Th	10 1e	Number of Teeth of Gea	rs Classification	of Speed and Feed	Ro	xes Functions				
and Requirement	nts			f of Speed and Feed	DU	Acs, I difetions				
	105	Uni	it – III			10 Hrs				
DESIGN OF	MA	CHINE TOOL STRU	CTURES: Desig	n Criteria. Material	s. S	tatic Stiffness.				
Profile of Mach	ine	e Tool Structures. Basic l	Design Procedure	. Design of Beds. D	esig	n of Columns.				
Design of Hous	sing	g. Design of Bases and T	ables. Design of	Cross Rails. Arms. S	Sado	dles. Carriages				
and Rams.		<i>, 8</i>								
		Uni	it – IV			10 Hrs				
DESIGN OF	JU	IDEWAYS AND POWI	ER SCREWS: F	unction and Types C	buid	eways, Design				
of Slideways,	De	sign Criteria and Calcu	lations Slideway	vs, guideways opera	ting	g under liquid				
friction condition	ons	, Design of Power Screw	s.		-	-				
		Un	it – V			10 Hrs				
DESIGN OF	SI	PINDLES AND SPINI	DLE SUPPORT	'S: Functions of S	pinc	lles Unit and				
requirements, N	/lat	erials of Spindles, Effect	of Machine Too	l Compliance on Ma	ichi	ning accuracy,				
Design Calculat	tio	n of Spindles, Anti-frictio	on Bearings, Slidi	ng Bearings.						
Course Outcor	nes	5:								
After going three	bug	gh this course the student	will be able to:							
CO1: Describe the fundamentals of Machine Tool Design										
CO2: Analyze	CO2: Analyze the merits and demerits of different machine tool design techniques									
CO3: Apply th	ne	numerical equations in de	esigning the Mach	nine Tool						
CO4: Demons	tra	te the designing skill of N	Machine Tool							

Reference Books

- 1. N K Mehta, "Machine Tool Design and Numerical Control", Tata McGraw Hill, 3rd Ed, ISBN: 978-1-25-900457-5
- 2. N. Acherkan V Push, Nicholas Weinstein, "Machine Tool Design" University Press, 2000, ISBN: 9780898750485
- 3. Nicholas Lisitsyn, Alexander Gavryusin, Oleg Trifonov, Alexander Kudryashov, "Machine Tool Design", Ardent Media Inc. ISBN: 9780829014761
- 4. CMTI, "Machine Tool Design Handbook", Tata McGraw-Hill, 2008, ISBN: 978-0-07-451564-8

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	L	Н								
CO2	М	М	L	М							
CO3		L	М	Н	Μ						
CO4			L	Μ	Н						

	PSO1	PSO2
CO1	L	L
CO2	L	
CO3		М
CO4		Н

PRODUCT COST ANALYSIS AND OPTIMIZATION									
	r		(Elective Grou	p3)		400			
Course Code	:	16MPD241	4.0.0.0	CIE Marks	:	100			
Hours / Week	:	L: T: P: S	4:0:0:0	SEE Marks	:	100			
Crodit		1		SEE Duration		3 Hours			
Course Learning O	• hier	tivos.		SEE Duration	•	5 110015			
Student should be ab	le to)							
(1) Understand the ne	ew r	, product strateg	ies in the produ	ct development					
(2) Apply the approx	oriat	e technique f	for manufacturi	ng and standardiza	ation	of Manufacturing			
Planning		1		8		6			
(3) Analyze the Cost	cal	culation for ma	achined compor	nents, welding, cas	sting	and forged			
components									
(4) Evaluate the steps	s inv	volved in cost	estimation and I	Launching the pro	duct				
						10Hrs			
		U	nit — I						
Introduction: New	prod	lucts, New pi	roduct strategy	, Sequential De	cisio	on Process, Market			
definition and entry	stra	itegy, Idea ge	neration, introd	luction to the des	ign	process, forecasting			
sales potential			• •			1011			
C M		U	nit -II	N 1° A / (°/ 1	C	10Hrs			
Consumer Measurem	ient	process, Resea	arch Methods, S	Sampling, Attitude		lling,			
Perceptual Mapping	; P	erceptual Pos	· Proforance in	piual Maps allu n Product Positio	Alla	Propertive Product			
Positioning Renefit	Segi	nentation Ma	nagerial use of	Preference Model	s s	, Floacuve Flouuci			
r ostroning, Denent	5051	inemation, ma	inageriar ase or		5				
		U	nit -III			10Hrs			
Manufacturing Plan	nnir	g: Selection of	of optimum pro	cess, standardizati	on. l	Break even analysis-			
application and area	of u	se -problems -	multi - product	analysis and Proc	ess p	olanning.			
Value Analysis: Step	ps ir	selection, ana	lysis and imple	ementation, Select	ion c	of cutting speed for			
optimum cost - probl	ems								
		τ	J nit-IV			10Hrs			
Cost Accounting									
Cost estimation -diff	eren	ce -types -step	s involved in c	ost estimation. Ty	pes o	of Cost: Cost			
Centres, Direct –indi	rect	, material cost	-direct indirect	material cost Ove	rhea	d cost			
Elements in overhea	ads:	Preparation c	of cost sheet, r	nachine hour rate	e, ap	portioning methods			
Variance Analysis –	Lat	our variance,	Material varian	ice and Overhead	varia	ance, Activity based			
costing - introduction to target costing									
	Unit-V 8Hrs								
Cost Calculation									
Cost calculation for	or n	nachined con	nponents, weld	ling, casting, Sh	neet	Metal and forged			
components illustrat	ions	- calculation	of sales cost. I	Launching the pro	oduc	t: Launch Planning,			
Track Launching, Du	irab	le and Industri	al Products.						

After going through this course the student will be able to

- CO1: Describe the Value Analysis and new product strategy
- CO2: Apply suitable manufacturing process based on material and product
- CO3: Analyzing the Cost Accounting machined components for a given material

CO4:Evaluate the parameters for design considerations based on process

Reference Books

- (1) Glen L Urban, John R Hauser, "Design and Marketing of New Products", Prentice Hall. New Jersey, 1980, ISBN : 40:0257-02-0001
- (2) T.R.Ranga and S C Sharma, "Mechanical Estimating and Costing",- Khanna Publishers-2015. ISBN : 40:0257-02-0001
- (3) Yasuhiro Monden Cost management in the New Manufacturing Age -, Productivity Press-1992, 1980, ISBN : 90:0777-02-0001
- (4) Miles Lewrence, "Technique for Value Analysis And Engineering", McGraw Hill, New york-1972, ISBN : 65:0257-22-0004

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1		Н	Μ		Н	Μ				Н	L
CO2	Н							М	L		
CO3		Н		L							М
CO4	L		Н		М		Н				М

	PSO1	PSO2
CO1	Н	
CO2		М
CO3	М	
CO4	М	L

DESIGN FOR OUALITY									
		(Electiv	e Group 3)						
Course Code	:	16MPD242		CIE Marks:	:	100			
Hours /Week	:	L:T:P:S	4:0:0:0	SEE Marks	:	100			
Credit	:	4		SEE Duration	:	3Hours			
Course Learning Ob	jec	tives							
Student should be able to									
1. Define a suitable process analytical tool for a given manufacturing environment.									
2. Identify the to	ols	for scientific process of	characterizati	on					
3. Apply basic ris	sk a	nalysis and experiment	nt design tecl	nniques into practical ca	ses				
4. Evaluate the t	ool	s for risk managemen	t and Design	of Experiments					
		Unit I				OUng			
DESIGN FUNDAM	יואק	$\frac{1}{1}$		DIAL SELECTION		91115			
Morphology of Design	LIN.	The Design Process	Computer A	ided Engineering Con	our	ront			
Engineering – Compe	u — Atiti	on Bench Marking _	Creativity _	Theory of Problem so	lvir	ng - Value			
Analysis - Design for	M	anufacture Design fo	or Assembly	– Design for casting F	org	ing Metal			
Forming, Machining a	nd	Welding	1 1 Robernory	Design for easing, 1	015	ing, meta			
,,,		Unit -II				9Hrs			
DESIGN FOR OUA	LIT	Y							
Quality Function Dep	loy	ment -House of Quali	ty-Objectives	s and functions-Targets-	Sta	keholders-			
Measures and Matrie	ces-	design process-Ident	ification of	control factors, noise	fa	ctors, and			
performance metrics -	de	veloping the experim	ental plan. R	unning the experiments	-C	Conducting			
the analysis-Selecting	and	l conforming factor-S	et points-refl	ecting and repeating	-				
		Unit -III				10Hrs			
DESIGN OF EXPE	RI	MENTS: Importance	of Experim	ents, Experimental Stra	ateg	gies, Basic			
principles of Design,	Τe	erminology, ANOVA	, Steps in E	xperimentation, Sample	e si	ze, Single			
Factor experiments -	Co	ompletely Randomize	ed design, R	andomized Block desig	gn,	Statistical			
Analysis, Multifactor	exp	eriments - Two and t	hree factor fu	ull Factorial experiment	s,	Fractional			
factorial design, Tag	uch	i's approach - Step	s in experin	nentation, Design using	g (Orthogonal			
Arrays, Data Analysis	, R	bust Design- Control	and Noise fa	actors, S/N ratios		1011			
		Unit-IV	ID DESIGN			10Hrs			
FAILURE MODE E	FF.	Drocoss Esilura Mod	ND DESIGN	FUK SIA SIGMA: : L	Jesi 111+x	gn Failure			
Process canability and	515, d.v.e	is Measurement system	e & Effect Al	Basis of Six sigma Pro	niec	Allarysis,			
for Six sigma six sig	nys ma	nrohlem solving- six	sigma in serv	vice and small organizati	on				
Init_V									
STATISTICAL CO	NS	IDERATION AND	RELIABII	JTY Frequency dist	ribu	itions and			
Histograms- Run cha	Histograms- Run charts –stem and leaf plots- Pareto diagrams-Cause and Effect diagrams-Box								
plots- Probability distribution-Statistical Process control–Scatter diagrams –Multivariable charts									
-Matrix plots and 3-D plotsReliability-Survival and Failure-Series and parallel systems-Mean									
time between failure-Weibull distribution									

- CO1. Describe suitable process analysis tools for a given manufacturing environment
- CO2. Analyse and implement, from quality point of view, the basic design of experiments approach
- CO3. Compare the critical quality attributes and critical process parameters
- CO4. Develop Quality by design principles as a cost-efficient approach to delivering high quality products and services.

Reference Books

- 1. Dieter, George E, "Engineering Design- A Materials and Processing Approach", McGraw Hill International Editions, Singapore, ISBN : 1:0337-32-0033
- 2. kevin otto & kristin wood, "Product Design Techniques in Reverse Engineering and New Product Development", Pearson Education (LPE), ISBN : 56:0257-02-4501
- 3. James R. Evens, William M, "The Management and control of Quality",6th edition-Lindsay Publications, ISBN : 670:0257-02-0225
- 4. Glen L Urban, John R Hauser, "Design and Marketing of New Products", Prentice Hall. New Jersey, 1980, ISBN : 40:0257-02-0001

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Η	М					L				
CO2	Μ	М		L	L					L	
CO3	L		L	М	L					L	L
CO4	L	М				L		L	L		L

	PSO1	PSO2
CO1	Н	
CO2		М
CO3	М	М
CO4	L	

		ADDITIVE	MANUFACTUR	RING					
Course Code	:	16MPD251/16MTE251		CIE Marks	:	100			
Hrs/Week	:	L:T:P:S	<mark>4:0:0:0</mark>	SEE Marks	:	100			
Credits	:	4		SEE Duration	:	3 Hrs			
Course Learn Student shall 1. Define the l 2. Discuss the 3. Develop the 4.Evaluate the 5. Apply AM Basic Princip Conventional Limitations; C Object Manuf Parameters an Extrusion-Ba Deposition M	ning be pasi pri e coo sci sci lles M Con actu Con actu d N ased	g Objectives (CLO): able to cs of Additive Manufactur nciples of Additive Manufactur oncept of system and inform chniques of Additive Manu ence in implementing the I Uni and Development of AM achining Processes, Deve current Engineering; Data tring Uni sion Processes: Introduct fodeling, Laser, UV and IF I Systems: Introduction, ling	ing acturing natics of Additive facturing Production Process it – 1 Technology: elopment of CA Format; Rapid P Format; Rapid P tion, Materials, Po C; Process Benefits Basic Principles,	Manufacturing D/CAM systems, Ad rototyping Technolog pwder Fusion Mechan s and Drawbacks. Plotting and Path C	dvar ies, nism	10 Hrs ntages and Laminated 10 Hrs ns, Process rol, Fused			
		Unit	t – III			10 Hrs			
Stereolithogr Material and Jetting Machin Laser Engine Post Processi	 Stereolithography: Materials, Processes parameters, advantages and limitations; Material and Binder Jetting: Evolution, Materials, Material Processing Fundamentals, Material Jetting Machines, Process Benefits, binding materials and systems. Laser Engineered Net Shaping (LENS) : Materials, Process Parameters & Systems Post Processing of additive manufactured parts. 								
		Unit	t – IV			10 Hrs			
Design for A Capabilities, C Applications Applications,	dd Core foi Aei	itive Manufacturing: De e DFAM Concepts and Ob c Additive Manufactures cospace and Automotive A	esign for Manufac jectives, CAD Too Introduction, The pplications.	cturing and Assembly ols for AM. ne Use of AM to Su	v, A uppo	M Unique rt Medical			
		Uni	t - V			08 Hrs			
Rapid Toolir Molding Inser Calcium silica	ng: ts, i te l	Introduction, Direct and EDM Electrodes, Investme based castable tooling,	Indirect AM tooli ent Casting and Otl	ng process; Production her Systems, RTV Sili	on o con	f Injection e Tooling,			

After going through this course the student will be able to:

- CO1 Explain the working process and technology development of Additive Manufacturing.
- CO2 Apply the principles of AM in manufacturing industry
- CO3 Analyze the concepts of AM in Production Process
- CO4 Evaluating the techniques involved in AM

Reference Books:

- 1. Ian Gibson, David Rosen, Brent Stucker, "Additive Manufacturing Technologies"-Springer, 2nd Edition. ISBN 978-1-4939-2112-6
- 2. Chee Kai Chua, Kah Fai Leong, "3D Printing and Additive Manufacturing, Principles and Applications", 4th Ed, ISBN 978-9-8145-7140-1
- 3. Amit Bandyopadhyay, Susmita Bose "Additive Manufacturing", CRC Press 2015 ISBN 9781482223590
- 4. Lihni Wang, Andrew Y.C. Nee "Collabarative design and planning for digital manufacturing" Springer Series, 2009, ISBN 998-1-84882-286-3

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Н	L									
CO2	М	Μ	L	Μ							
CO3	L	Н	Μ	Н	Μ						
CO4		L	L	М	Н						

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PSO1	PSO2
CO1	L	L
CO2		L
CO3	Н	
CO4		Н

OPTIMIZATION TECHNIQUES								
(Elective Group 4)								
Course Code	urse Code : 16MPD252 CIE Marks : 100						100	
Hours /Week	:	L:T:P:S	4:0:0:0	SEE Marks	:		100	
Credit	:	4		SEE Duration	:	31	Hours	
Course Learning Obj	ject	tives (CLO)						
Student shall be able t	0							
1. Understand the	e to	ols used in op	timization tec	chnique				
2. Analyse optim	iza	tion algorithm	s, the theoreti	cal principles that un	nder	pin them.		
3. Apply specific	m	ethods to solve	e operations re	elated problems				
4. Develop model	llin	g skills necess	ary to describ	e and formulate opt	imi	zation problen	ns and	
their use for so	lvi	ng several type	es of practical	ly relevant optimiza	tion	problems aris	sing in	
process system	s e	ngineering						
Unit - I 10Hrs								
Classical Optimizati	ion	Techniques	: Introduction	n, Review of sin	gle	and multiva	ariable	
optimization methods	5 V	vith and with	nout constrain	nts, linear one-dim	nens	ional minimi	ization	
problems, Examples						r		
		1	Unit -II			1	0Hrs	
Nonlinear programm	ing	g : Convex sets	s and convex i	functions, Kuhn-Tu	cker	conditions. C	Convex	
quadratic programming	g: \	Wolfe's and Pi	vot compleme	entary algorithms. So	epai	able program	ming	
		τ	Jnit -III			1	0Hrs	
Geometric Program	miı	ng: Introducti	on, Unconstra	ained minimization	pro	oblems, soluti	ion of	
unconstrained problem	m	from arithme	etic-geometric	inequality point	of	view, Const	rained	
minimization problem	ns,	Generalized	polynomial	optimization, App	lica	tions of geor	metric	
problems, Introduction	n to	stochastic opt	imization			1		
			Unit-IV			1	0Hrs	
Inventory Models: Introduction to inventory control, component inventory, dependent and								
indendent demand, inventory classification, deterministic inventory model, EOQ models with								
quantity discount.								
	4		Unit-V		1	<u> </u>	8Hrs	
Keplacement & Main	nte	nance Models	: Replacemen	it of items, subject t	o d	eterioration of	items	
subject to random failure group vs. individual replacement policies. Master scheduling-								
objectives and method	S							

after going through this course the student will be able to:

- CO1. Describe different types of test of Hypotheses
- CO2. Analyse various optimization techniques
- CO3. Apply various multivariable optimization problems arising in process systems engineering
- CO4. Evaluate the options of a particular method to achieve required operational goal.

Reference Books

- 1) Hiller and Liberman, "Introduction to Operations Research", McGraw Hill 8th Edn. 2008, ISBN: 9780070600928
- (2) Taha.H.A,"Introduction to Operations Research", McMillan 7th Edn, 2006, ISBN: 8177585835
- (3) Joseph G Monks, "Operations Management Theory & Problems", McGraw Hill, 3rd Edn 1987, ISBN:0070427275
- (4) Ramamurthy P," Production and Operations Management", 2nd Edn, New Age International, 2006, ISBN:812241558

Scheme of Continuous Internal Evaluation (CIE)

CIE will consist of TWO Tests, TWO Quizzes and ONE assignment. The test will be for 30 marks each and the quiz for 10 marks each. The assignment will be for 20 marks. The total marks for CIE (Theory) will be 100 marks.

Scheme of Semester End Examination (SEE)

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one question from each unit. The total marks for SEE (Theory) will be 100 marks.

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	Μ	Н			L					L	L
CO2	Μ	Н	L	L							
CO3						L	L				
CO4								М	L	М	

	PSO1	PSO2
CO1		М
CO2		L
CO3	М	
CO4	Н	L

			MIN	NOR PROJECT	[
Course C	Code	:	16MPD26		CIE Marks	:	100
Hrs/Wee	k	:	L:T:P:S	0:0:10:0	SEE Marks	:	100
Credits		:	05		SEE Duration	:	3 Hours
Course L	earni	ng	Objectives:			•	
Students a	are abl	e to	0				
1. Under	rstand	the	e method of applying eng	ineering knowle	dge to solve specific	prot	olems.
2. Apply	v engin	ieei	ring and management pri	inciples while ex	ecuting the project		
3. Demo	onstrate	e th	e skills for good present	ation and technic	cal report writing skil	ls.	
4. Identi	fy and	so	lve complex engineering	g problems using	professionally prescr	ibec	l standards.
			G	UIDELINES			
1. Eac	h proj	ect	group will consist of ma	ximum of two s	tudents.		
2. Eac	h stuc	len	t / group has to selec	ct a contempor	ary topic that will	use	the technical
kno	wledg	e o	f their program of study	after intensive li	terature survey.		
3. Allo	ocation	1 of	f the guides preferably in	accordance wit	h the expertise of the	facu	lty.
4. The	numb	ber	of projects that a faculty	can guide would	l be limited to four.		
5. The	mino	r pı	roject would be performe	ed in-house.			
6. The	e impl	em	entation of the project	must be prefe	rably carried out us	ing	the resources
avai	ilable	in t	he department/college.				
Course O	Outcon	nes	:				
After goir	ng thro	oug	h this course the students	s will be able to			
CO1: C	Concep	tua	lize, design and impleme	ent solutions for	specific problems.		
CO2: C	Commu	inio	cate the solutions through	n presentations a	nd technical reports.		
CO3: A	apply r	esc	ource managements skills	s for projects			
CO4: S	ynthes	size	e self-learning, team worl	k and ethics.			

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members : guide, two senior faculty members and Head of the Department.

Phase	Activity	Weightage

Ι	Synopsis submission, Preliminary seminar for the approval of	20%
	selected topic and Objectives formulation	
II	Mid-term seminar to review the progress of the work and	40%
	documentation	
III	Oral presentation, demonstration and submission of project report	40%

****Phase wise rubrics to be prepared by the respective departments**

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of objectives	10%
• Design and simulation/ algorithm development/experimental setup	25%
• Conducting experiments / implementation / testing	25%
• Demonstration & Presentation	15%
• Report writing	25%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Presentation / Demonstration of the project	20%
3.	Methodology and Experimental Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	М	Μ	Н	Н	Н			М		Н	Н
CO2					Н			Н	Н	Н	
CO3	Н	Н	М		М	М	Н	Н		Μ	Н
CO4		Н				Н	М	М	М	Н	

	PSO1	PSO2
CO1	М	
CO2		L

CO3	М	
CO4	Н	