

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R. V. Vidyaniketan Post, Mysuru Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in MACHINE DESIGN

DEPARTMENT OF MECHANICAL ENGINEERING

INNER FRONT COVER PAGE

College Vision & Mission (To be included from our side)

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysuru Road Bengaluru – 560 059

Scheme and Syllabus of I & II Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in MACHINE DESIGN

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering.
- Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- Facilitating faculty development through continuous improvement programs.
- Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs

Program Outcomes (PO)

- M. Tech. in Machine Design graduates will be able to:
 - PO1: An ability to independently carry out a research / investigation and development work to solve practical problems related to machine design.
 - PO2: An ability to write and present a substantial technical report / document
 - PO3: An ability to demonstrate a degree of mastery over the areas of machine design. The mastery should be at a level higher than the requirements in the BE Mechanical Engineering and allied programs
 - PO4: An ability to use modern tools for the design and analysis of static and dynamic systems and mechanisms
 - PO5: An ability to adapt technical, safety, ethical and environmental factors in the design of system and mechanism
 - PO6: An ability to perform in multidisciplinary teams with sound interpersonal and management skills with a commitment to lifelong learning

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	CE	Professional Core Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PHY	Physics		
21.	CHY	Chemistry		
22.	MAT	Mathematics		

	I Semester				
Sl. No.	Course Code	Course Title	Page No.		
1.	18MAT11A	Applied Mathematics	1		
2.	18MMD12	Mechanics of Composite Materials	3		
3.	18MMD13	Kinematics and Dynamics of Mechanisms	5		
4.	18HSS14	Professional Skills Development	7		
5.	18XXX 1AX	Elective A	9-13		
6.	18XXX1BX	Elective B	15-19		
		GROUP A: CORE ELECTIVES	·		
1.	18MPD1A1	Product Design for Quality	9		
2.	18MMD1A2	Tribology	11		
3.	18MCM1A3	Design of Hydraulic & Pneumatic Systems	13		
		GROUP B: CORE ELECTIVES			
1.	18MPD1B1	Product Data Management	15		
2.	18MCE1B2	Intelligent Systems	17		
3.	18MCM1B3	Non-Traditional Machining & Testing	19		

INDEX

		II Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	18MMD21	Advanced Solid Mechanics	21
2.	18MMD22	Advance Theory of Vibrations	23
3.	18IM23	Research Methodology	25
4.	18MMD24	Minor Project	27
5.	18XXX2CX	Elective C	29-33
6.	18XXX2DX	Elective D	35-39
7.	18XXX2GXX	Global Elective	41-59
		GROUP C: CORE ELECTIVES	
1.	18MMD2C1	Theory of Plates and Shells	29
2.	18MPD2C2	Design for Manufacture and Assembly	31
3.	18MCM2C3	Computer Application in Design	33
	·	GROUP D: CORE ELECTIVES	
1.	18MMD2D1	Advanced Machine Design	35
2.	18MCM2D2	Robotics and Automation	37
3.	18MMD2D3	Advanced Finite Element Analysis	39
		GROUP G: GLOBAL ELECTIVES	
1.	18CS2G01	Business Analytics	41
2.	18CV2G02	Industrial & Occupational Health and Safety	43
3.	18IM2G03	Modeling using Linear Programming	45
4.	18IM2G04	Project Management	47
5.	18CH2G05	Energy Management	49
6.	18ME2G06	Industry 4.0	51
7.	18ME2G07	Advanced Materials	53
8.	18CHY2G08	Composite Materials Science and Engineering	55
9.	18PHY2G09	Physics of Materials	57
10.	18MAT2G10	Advanced Statistical Methods	59

RV COLLEGE OF ENGINEERNG[®], BENGALURU-560 059 (Autonomous Institution Affiliated to VTU, Belagavi) DEPARTMENT OF MECHANICAL ENGINEERING M.Tech in Computer Integrated Manufacturing

	FIRST SEMESTER CREDIT SCHEME							
SI.	Course Code	Course Title		Credit Allocation				
No.			BoS	L	Т	Р	Total Credits	
1	18MAT11A	Applied Mathematics	MAT	4	0	0	4	
2	18MMD12	Mechanics of Composite Materials	ME	4	0	1	5	
3	18MMD13	Kinematics and Dynamics of Mechanisms	ME	4	0	1	5	
4	18HSS14	Professional Skills Development	HSS	0	0	0	0	
5	18XXX 1AX	Elective A	ME	3	1	0	4	
6	18XXX1BX	Elective B	ME/CSE	4	0	0	4	
	Tota	l number of Credits		19	01	02	22	
	Total N	umber of Hours / Week						

	SECOND SEMESTER CREDIT SCHEME							
SI.	Course Code	Course Title		Credit Allocation				
No.			BoS	L	Т	Р	Total Credits	
1	18MMD21	Advanced Solid Mechanics	ME	4	0	1	5	
2	18MMD22	Advance Theory of Vibrations	ME	3	1	0	4	
3	18IM23	Research Methodology	IEM	3	0	0	3	
4	18MMD24	Minor Project	ME	0	0	2	2	
5	18XXX2CX	Elective C	ME	4	0	0	4	
6	18XXX2DX	Elective D	ME	4	0	0	4	
7	18XXX2GXX	Global Elective	Respective Boards	3	0	0	3	
	Total number of Credits					03	25	
	Tota	al Number of Hours / Week						

	I Semester				
		GROUP A: CORE ELECTIVES			
Sl.	Course Code	Course Title			
No.					
1.	18 MPD1A1	Product Design for Quality			
2.	18 MMD1A2	Tribology			
3.	18 MCM1A3	Design of Hydraulic & Pneumatic Systems			
	GROUP B: CORE ELECTIVES				
1.	18 MPD1B1	Product Data Management			
2.	18MCE1B2	Intelligent Systems			
3.	18 MCM1B3	Non-Traditional Machining & Testing			
		II Semester			
	GROUP C: CORE ELECTIVES				
1.	18MMD2C1	Theory of Plates and Shells			
2.	18MPD2C2	Design for Manufacture and Assembly			
3.	18MCM2C3	Computer Application in Design			
	GROUP D: CORE ELECTIVES				
1.	18MMD2D1	Advanced Machine Design			
2.	18MCM2D2	Robotics and Automation			
3.	18MMD2D3	Advanced Finite Element Analysis			

	GROUP E: GLOBAL ELECTIVES				
Sl. No.	Sl. No. Host Dept Course Code Course Title Cre				
1.	CS	18CS2G01	Business Analytics	3	
2.	CV	18CV2G02	Industrial & Occupational Health and Safety	3	
3.	IM	18IM2G03	Modelling using Linear Programming	3	
4.	IM	18IM2G04	Project Management	3	
5.	СН	18CH2G05	Energy Management	3	
6.	ME	18ME2G06	Industry 4.0	3	
7.	ME	18ME2G07	Advanced Materials	3	
8.	CHY	18CHY2G08	Composite Materials Science and Engineering	3	
9.	PHY	18PHY2G09	Physics of Materials	3	
10.	MAT	18MAT2G10	Advanced Statistical Methods	3	

			Semester: 1			
			APPLIED MATHE			
			IMD,MCM,MPE,N	<u>IBT,MBI,MCH,MST,MH</u>		100
Course Code	:	18MAT11A		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 Hrs
			Unit – I			10 Hrs
STATISTICS						
	squa	ares, fitting of	straight line, linea	rization of nonlinear laws	s, ci	urve fitting b
	-	-	-	of regression, Spearman ran		-
1		,	Unit – II	с, ~г	2.0	10 Hrs
PROBABILITY	DIS	TRIBUTIONS				
			variables-discrete	and continuous random v	arial	bles, importar
				tributions-Binomial, Expor		
Gamma distributio				· 1		
			Unit – III			10 Hrs
				ALUE PROBLEMS		
System of linear e	quat	ions-LU decom	position and Gauss-	Jordan method, Eigen valu	e pro	oblems-bound
on eigen values,	Pow	er method and	Inverse Power met	hod, Eigen values and eig	gen	vectors of re-
symmetric matrice						
•			Unit – IV			11 Hrs
NUMERICAL S	OLU	TION OF DIF	FERENTIAL EQU	UATIONS		
Boundary value	prot	olems (BVP's)-	-finite difference i	method for linear and no	onlir	near problem
Shooting method	an	d Galerkin me	ethod. Finite differ	rences-implicit and explicit	cit s	scheme, Fini
difference method	ls fo	r parabolic, elli	ptic and hyperbolic	partial differential equation	ons,	Finite element
method and simpl	e pro	oblems.				
			Unit – V			11 Hrs
CONCEPTS OF	EN(GINEERING (PTIMIZATION			
Engineering appli	catio	ons of optimiza	tion, statement of a	n optimization problem-de	sign	vector, desig
				l objective function surf		
				conditions, Constraint qua		
operators, Neural-	Netv	work-based Opt	imization. Optimiza	tion of Fuzzy systems.		
Course Outcome	s:					
After going throu	ıgh t	this course the	student will be able	e to:		
CO1: Identify a	nd i	nterpret the fu	ndamental concept	s of statistics, distributio	ns,	linear algebr
				various field engineering.		C
	-			numerical/optimization te	chni	ques to solv
				ns, linear equations, eigen		
differentia				· · · · · ·		•
			n to establish a s	tatistical / mathematical	mod	el and use a
			nd optimize the solu			

CO4: Distinguish the overall mathematical knowledge gained to demonstrate the problems of least squares, probability distributions, linear equations, eigen value problems, differential equations and optimization arising in practical situations.

R	eference Books:					
1	Theory and Problems of probability, Seymour Lipschutz and Marc lars Lipson, Schaum's Outline					
	Series, 2nd edition, ISBN: 0-07-118356-6.					
2	Introductory method of numerical analysis, S. S. Sastry, Prentice-Hall India Pvt. Ltd. 4th edition,					
	2009, ISBN : 81-203-1266-X.					
3	Numerical methods for scientific and engineering computation, M K Jain, S. R. K. Iyengar, R. K.					
	Jain, New Age International Publishers, 6th edition; 2012, ISBN-13:978-81-224-2001-2.					
4	Engineering Optimization Theory and Practice, Singiresu S. Rao, 3rd edition, New Age					
	International (P)Ltd., ISBN: 81-224-1149-5.					

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: I				
	MECHANICS OF COMPOSITE MATERIALS				
		(Theory	v & Practice)		
Course Code	:	18MMD12	CIE Marks	:	100 + 50
Credits L: T: P	:	4:0:1	SEE Marks	:	100 + 50
Hours	:	52L+26P	SEE Duration	:	3 Hrs

Unit – I10 HrsIntroduction to Composite Materials: Definition, Classification, Types of matrices material and
reinforcements, Characteristics & selection, Fiber composites, laminated composites, Particulate
composites, Prepegs, and sandwich construction. Metal Matrix Composites: Reinforcement materials,
Types, Characteristics and selection, Base metals, Selection, Applications10 Hrs

Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Derivation of nine independent constants for orthotropic material, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, engineering constants - Numerical problems.Invariant properties.Stress-Strain relations for lamina of arbitrary orientation, Numerical problems.

Unit – II	11 Hrs			
Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli, Rule of				
mixture, Numerical problems. Experimental Characterization of Lamina- Elastic Moduli and	Strengths			
Failure Criteria: Failure criteria for an elementary composite layer or Ply, Maximum Stress and Strain				
Criteria, Approximate strength criteria, Inter-laminar Strength, Tsa-Hill theory, Tsai-Wu ten	sor theory,			
Numerical problem, practical recommendations.				

Unit – III11 HrsMacro Mechanical Analysis of Laminate:Introduction, code, Kirchoff hypothesis, ClassicalLamination Theory, A, B, and D matrices (Detailed derivation), Special cases of laminates, Numericalproblems. Shear Deformation Theory, A, B, D and E matrices (Detailed derivation)Unit – IV10 Hrs

Unit – IV10 HrsAnalysis of Composite Structures: Optimization of Laminates, composite laminates of uniform
strength, application of optimal composite structures, composite pressure vessels, spinning composite
disks, composite lattice structures

Unit – V10 HrsManufacturing and Testing: lay-up and curing - open and closed mold processing, Hand lay-up
techniques, Bag molding and filament winding. Pultrusion, Pulforming, Thermoforming, Injection
moulding, Cutting, Machining, joining and repair. NDT tests – Purpose, Types of defects, NDT method
- Ultrasonic inspection, Radiography, Acoustic emission and Acoustic ultrasonic method.

Applications: Aircrafts, missiles, Space hardware, automobile, Electrical and Electronics, Marine, Recreational and sports equipment-future potential of composites.

- 26 Hrs
- Unit –VI Composites Lab

 1. Identify the different ASTM Standards used for characterization of advanced materials.
 - Synthesis of thermosetting and thermoplastic composites
- 3. Conduct the physical and mechanical properties of the advanced engineering materials
- 4. Manufacturing and testing of Nano-composite
- 5. Ageing hardening of Al alloy

Course Outcomes:

2.

After going through this course the student will be able to:

CO1: Explain the manufacturing process involved thermoplastic, thermoset and ceramic materials

- CO2: Apply rule of mixtures to evaluate mechanical properties of composites
- **CO3:** Describe Manufacturing and testing of composites
- **CO4:** Evaluate the design considerations based on material & process

Re	eference Books:
1	Mechanics of Composite materials, Autar K. Kaw, CRC Press, 2 nd Ed, 2005. ISBN 0-8493-1343-0
2	Mechanics of Laminated Composite Plates & Shells, J. N. Reddy, CRD Press, 2nd Ed, 2004, ISBN 9780849315923
3	Composite Materials handbook, Mein Schwartz, McGraw Hill, 1984, I SBN 10: 0070557438/ ISBN 13: 9780070557437
4	Mechanics of Composite Materials, Rober M. Jones, Taylor & Francis, 1998. ISBN 1-56032-712-X

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

Semester: I					
KINEMATICS AND DYNAMICS OF MECHANISMS					
	(Theory &	Practice)			
Course Code	: 18MMD13	CIE Marks	:	100 + 50	
Credits L: T: P	: 4:0:1	SEE Marks	:	100 + 50	
Hours	: 52L+26P	SEE Duration	:	3 Hrs	

Geometry of Motion: Introduction, analysis and synthesis, Mechanism terminology, planar, spherical and spatial mechanisms, mobility, Grashoffs law, Equivalent mechanisms, Unique mechanisms, Kinematic analysis of plane mechanisms: Development of different mechanisms and its inversions like four bar chain mechanism, slider crank mechanism, double slider cranks, mechanism.11 HrsGeneralized Principles of Dynamics: Fundamental laws of motion, Generalized coordinates, Configuration space, Constraints, Virtual work, Principle of Virtual Work, Energy and Momentum, Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum. Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamilton's equations, Hamilton's principle, Lagrange's, equation from Hamilton's principle, Derivation of Hamilton's equations, Examples.11 HrsAnalytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions, for the law of
and spatial mechanisms, mobility, Grashoffs law, Equivalent mechanisms, Unique mechanisms, Kinematic analysis of plane mechanisms: Development of different mechanisms and its inversions like four bar chain mechanism, slider crank mechanism, double slider cranks, mechanism. In the transmechanism, slider crank mechanism, double slider cranks, mechanism. In the transmechanism, slider crank mechanism, double slider cranks, mechanism. In the transmechanism, slider crank mechanism, double slider cranks, mechanism. It is the four bar chain mechanism, slider crank mechanism, double slider cranks, mechanism. In the transmechanism, slider crank mechanism, double slider cranks, mechanism. It is the transmechanism of the transmechanism. It is the transmechanism of the transmechanism. The transmechanism of the transmechanism of the transmechanism of the transmechanism. The transmechanism of the transmechanism of the transmechanism of the transmechanism. The transmechanism of the transmechanism of the transmechanism of the transmechanism. The transmechanism of the transmechanism of the transmechanism of the transmechanism. The transmechanism of the transmechanism of the transmechanism. The transmechanism of the transmechanism of the transmechanism of the transmechanism. The transmechanism of the transmechanism of the transmechanism of the transmechanism. The transmechanism of the transmechanism of the transmechanism of the transmechanism of the transmechanism
Kinematic analysis of plane mechanisms: Development of different mechanisms and its inversions like four bar chain mechanism, slider crank mechanism, double slider cranks, mechanism. Unit – II 11 Hrs Generalized Principles of Dynamics: Fundamental laws of motion, Generalized coordinates, Configuration space, Constraints, Virtual work, Principle of Virtual Work, Energy and Momentum, Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum. Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamilton's equations, Hamilton's principle, Lagrange's, equation from Hamilton's principle, Derivation of Hamilton's equations, Examples. 11 Hrs Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
four bar chain mechanism, slider crank mechanism, double slider cranks, mechanism. Unit – II 11 Hrs Generalized Principles of Dynamics: Fundamental laws of motion, Generalized coordinates, Configuration space, Constraints, Virtual work, Principle of Virtual Work, Energy and Momentum, Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum. Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamilton's equations, Hamilton's principle, Lagrange's, equation from Hamilton's principle, Derivation of Hamilton's equations, Examples. 11 Hrs Unit – III 11 Hrs Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Unit – II11 HrsGeneralized Principles of Dynamics: Fundamental laws of motion, Generalized coordinates, Configuration space, Constraints, Virtual work, Principle of Virtual Work, Energy and Momentum, Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum. Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamilton's equations, Hamilton's principle, Lagrange's, equation from Hamilton's principle, Derivation of Hamilton's equations, Examples.11 HrsInit – III11 HrsAnalytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Generalized Principles of Dynamics: Fundamental laws of motion, Generalized coordinates, Configuration space, Constraints, Virtual work, Principle of Virtual Work, Energy and Momentum, Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum. Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamilton's equations, Hamilton's principle, Lagrange's, equation from Hamilton's principle, Derivation of Hamilton's equations, Examples. Unit – III 11 Hrs Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Configuration space, Constraints, Virtual work, Principle of Virtual Work, Energy and Momentum, Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum. Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamilton's equations, Hamilton's principle, Lagrange's, equation from Hamilton's principle, Derivation of Hamilton's equations, Examples. Unit – III 11 Hrs Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum. Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamilton's equations, Hamilton's principle, Lagrange's, equation from Hamilton's principle, Derivation of Hamilton's equations, Examples. Unit – III 11 Hrs Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Generalized momentum. Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamilton's equations, Hamilton's principle, Lagrange's, equation from Hamilton's principle, Derivation of Hamilton's equations, Examples. Unit – III 11 Hrs Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Examples, Hamilton's equations, Hamilton's principle, Lagrange's, equation from Hamilton's principle, Derivation of Hamilton's equations, Examples. Unit – III Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Derivation of Hamilton's equations, Examples. Unit – III 11 Hrs Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Unit – III 11 Hrs Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Analytical Methods of Dimensional Synthesis: Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions,
Structural error, Chebychev spacing, Two position synthesis of slider crank mechanisms, Crank-rocker
mechanisms with optimum transmission angle Motion Generation: Poles and relative poles, Location of
poles and relative poles, polode, Curvature, Inflection circle
Unit – IV 10 Hrs
Graphical Methods of Dimensional Synthesis: Two position synthesis of crank and rocker
mechanisms, Three position synthesis, Four position synthesis (point precision reduction) Overlay
method, Coupler curve synthesis, Cognate linkages. Analytical Methods of 32 Dimensional Synthesis:
Freudenstein's equation for four bar mechanism and slider crank mechanism, Examples, Bloch's method
of synthesis, Analytical synthesis using complex algebra.
Unit –V10 HrsSpatial Mechanisms: Introduction, Position analysis problem, Velocity and acceleration analysis,
Eulerian angles.
Unit –VI Kinematics and Dynamics of Mechanisms Lab26 Hrs
Modeling and functional simulation of:
1. Freely falling body
2: Inclined Plane
3: Lift Mechanism - Geometry
4: Lift Mechanism - Simulation
5: One-degree-of-freedom Pendulum
6: Projectile 7: Spring Damper - Part 1

- 7: Spring Damper Part 1
- 8: Spring Damper Part 29: Suspension System 1
- 10: Suspension System 2
- 11: Four Bar Mechanism
- 12: Cam-Follower
- 13: Crank Slider
- 14: Controls Toolkit in ADAMS/View.

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Describe the fundamental concepts of kinematics and dynamics
- **CO2:** Design and analyze mechanism and kinematic linkages
- **CO3:** Identify, formulate and solve engineering dynamic problems
- **CO4:** Determine forces acting on the parts of machines used in Industries

Reference Books:

1	Kinematics, Dynamics and Design of Machinery, K.J.Waldron & G.L.Kinzel, Wiley India, 2007. ISBN-10: 0471244171
2	Classical Dynamics, Greenwood, Prentice Hall of India, 1988. ISBN-13: 978-0486696904
3	Theory of Machines and Mechanism, J E Shigley, McGraw-Hill, 1995, ISBN:12-0471344276
4	Mechanism and Machine Theory, A. G. Ambekar, PHI,2007. ISBN: 978-81-203-3134-1

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150 Theory (100 Marks) + Practical (50 Marks) =Total Marks (150)

Semester: I						
	PROFESSIONAL SKILL DEVELOPMENT					
		(Com	mon to all Programs)			
Course Code	:	18HSS14	CIE Marks	:	50	
Credits L: T: P	:	0:0:0	SEE Marks	:	Audit Course	
Hours	:	24 L				

	Unit – I	03 Hrs						
Communication Skills: Basics	of Communication, Personal Skills & Presentation	Skills -						
Introduction, Application, Simulation, Attitudinal Development, Self Confidence, SWOC analysis.								

Resume Writing: Understanding the basic essentials for a resume, Resume writing tips Guidelines for better presentation of facts. Theory and Applications.

OIIII - II	vo nrs
Quantitative Aptitude and Data Analysis: Number Systems, Math Vocabulary, fraction	decimals,
digit places etc. Simple equations – Linear equations, Elimination Method, Substitutio Inequalities.	n Method,

Reasoning – a. **Verbal** - Blood Relation, Sense of Direction, Arithmetic & Alphabet. b. **Non- Verbal reasoning** - Visual Sequence, Visual analogy and classification.

Analytical Reasoning - Single & Multiple comparisons, Linear Sequencing.

Logical Aptitude - Syllogism, Venn-diagram method, Three statement syllogism, Deductive and inductive reasoning. Introduction to puzzle and games organizing information, parts of an argument, common flaws, arguments and assumptions.

Verbal Analogies/Aptitude – introduction to different question types – analogies, Grammar review, sentence completions, sentence corrections, antonyms/synonyms, vocabulary building etc. Reading Comprehension, Problem Solving

Unit – III	03 Hrs
Interview Skills: Questions asked & how to handle them, Body language in interview, and	Etiquette –
Conversational and Professional, Dress code in interview, Professional attire and Grooming,	Behavioral
and technical interviews, Mock interviews - Mock interviews with different Panels. Practice	e on Stress
Interviews, Technical Interviews, and General HR interviews	

Unit – IV03 HrsInterpersonal and Managerial Skills: Optimal co-existence, cultural sensitivity, gender
sensitivity; capability and maturity model, decision making ability and analysis for brain
storming; Group discussion (Assertiveness) and presentation skills03 Hrs

Unit – V07 HrsMotivation: Self-motivation, group motivation, Behavioral Management, Inspirational and
motivational speech with conclusion. (Examples to be cited).07 Hrs

Leadership Skills: Ethics and Integrity, Goal Setting, leadership ability.

Course Outcomes:

- **CO1:** Develop professional skill to suit the industry requirement.
- **CO2:** Analyze problems using quantitative and reasoning skills
- **CO3:** Develop leadership and interpersonal working skills.
- **CO4:** Demonstrate verbal communication skills with appropriate body language.

Refere	ence Books:
1.	The 7 Habits of Highly Effective People, Stephen R Covey, 2004 Edition, Free Press, ISBN: 0743272455
2.	How to win friends and influence people, Dale Carnegie, 1 st Edition, 2016, General Press, ISBN: 9789380914787
3.	Crucial Conversation: Tools for Talking When Stakes are High, Kerry Patterson, Joseph Grenny, Ron Mcmillan 2012 Edition, McGraw-Hill Publication ISBN: 9780071772204
4.	Ethnus, Aptimithra: Best Aptitude Book, 2014 Edition, Tata McGraw Hill ISBN: 9781259058738

Scheme of Continuous Internal Examination (CIE)

Evaluation of CIE will be carried out in TWO Phases.

Phase	Activity			
I	After the completion of Unit 1 and Unit 2, students are required to undergo a test set for a total of 50 marks. The structure of the test will have two parts. Part A will be quiz based, evaluated for 15 marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total marks for this phase will be $50 (15 + 35)$.			
II	Students will have to take up second test after the completion Unit 3, Unit 4 and Unit 5. The structure of the test will have two parts. Part A will be quiz based evaluated for 15 marks and Part B will be of descriptive type, set for 50 Marks and reduced to 35 marks. The total marks for this phase will be $50 (15 + 35)$.			
	FINAL CIE COMPUTATION			
Continuous Internal Evaluation for this course will be based on the average of the score attained through the two tests. The CIE score in this course, which is a mandatory requirement for the award of degree, must be greater than 50%. The attendance will be same as other courses.				

Semester: I						
	PRODUCT DESIGN FOR QUALITY					
	(Group A: Core Elective)					
Course Code	:	18MPD1A1	CIE Marks	:	100	
Credits L: T: P	:	3:1:0	SEE Marks	:	100	
Hours	:	39L+26T	SEE Duration	:	3 Hrs	

Unit – I	07 Hrs		
Design for quality : Taguchi's Approach to Quality, On-line and Off-line Quality Control, , Quality			
Loss Function, System Design, Parameter Design, Design for Environment, Human fac	tor design,		
Design for casting and forging, Causes of Variation.			
Unit – II	08 Hrs		
Quality Function Deployment -Introduction, QFD team, benefits, voice of customer, orga	anisation of		
information, house of quality, QFD process			
Design of Experiments: Basic methods- Two factorial experiments-Extended method reduced	ed tests and		
fractional experiments, orthogonality, base design method, higher dimensional fractional factorial			
design			
Unit – III	08 Hrs		
Failure Mode Effect Analysis: Refining geometry and layout, Failure tree analysis, Defects and failure			
modes Techniques of failure analysis, Filed inspection of failure, Macroscopic and Microscopic			
examination, Additional tests, Analysis of data and report of failure.			

examination, Additional tests, Analysis of data and report of fandre.	
Unit – IV	08 Hrs
Statistical Consideration in Product Design and Development	
Frequency distributions and Histograms- Run charts -stem and leaf plots- Pareto diagrams-Cause and	
Effect diagrams-Box plots- Probability distribution- Statistical Process control-Scatter d	iagrams –
Multivariable charts	_

Unit –V08 HrsSix Sigma – Overview, Basics and history of the approach for six sigma, Methodology and focus, the
application of Six Sigma in production and in service industries, Relationship of Six Sigma and Lean
Management, linking Six Sigma project goals with organizational strategy

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Identify the importance of various principles of quality in product or service
- CO2: Use statistical tools in product development
- CO3: Apply basic risk analysis and experiment design techniques into practical cases
- **CO4:** Demonstrate knowledge about Six sigma, Design of Experiments

Reference Books:

1	Total quality Management Kevin Otto & Kristin Wood, Product Design Techniques in Reverse
1	Engineering and New Product Development, Pearson Education (LPE), 2001. ISBN10: 0130212717
2	Product Design and Development, Karl T. Ulrich, Steven D. Eppinger, TATA McGraw - HILL -
	3rd Edition, 2003. ISBN:13: 978-0073404776
2	The Management and control of Quality, James R. Evens, William M Lindsay,6th edition- South-
3	Western Publishers ISBN: 0314062157
4	Engineering Design, George E Dieter, 3 rd Edition, McGraw hill International Edition, ISBN: 0-07-
	116204-6

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I							
	TRIBOLOGY						
			(Group A: Core Elective)				
Course Code	:	18MMD1A2		CIE Marks	:	100	
Credits L: T: P	:	3:1:0		SEE Marks	:	100	
Hours	:	39L+26T		SEE Duration	:	3 Hrs	

Unit – I07 HrsIntroduction to Tribology: Introduction, Friction, Wear, Wear Characterization, Regimes of
lubrication, Classification of contacts, lubrication theories, Effect of pressure and temperature on
viscosity. Newton's Law of viscous forces, Flow through stationary parallel plates. Hagen's poiseuille's
theory, viscometers. Numerical problems, Concept of lightly loaded bearings, Petroff's equation,
Numerical problemsUnit – II08 Hrs

	00
Hydrodynamic Lubrications: Pressure development mechanism. Converging and diverging	g films and
pressure induced flow. Reynolds's 2D equation with assumptions. Introduction to idea	lized slide
bearing with fixed shoe and Pivoted shoes. Expression for load carrying capacity. Location of	of center of
pressure, effect of end leakage on performance, Numerical problems.	

Journal Bearings: Introduction to idealized full journal bearings. Load carrying capacity of idealizedfull journal bearings, Somerfield number and its significance, partial bearings, Comparison betweenlightly loaded and heavily loaded bearings, effects of end leakage on performance, Numerical problems.Unit – III08 Hrs

Hydrostatic Bearings: Hydrostatic thrust bearings, hydrostatic circular pad, annular pad, rectangular pad bearings, expression for discharge, load carrying capacity and condition for minimum power loss, numerical problems

Antifriction bearings: Advantages, selection, nominal life, static and dynamic load bearing capacity, probability of survival, equivalent load, cubic mean load, bearing mountings.

Unit – IV08 HrsEHL Contacts: Introduction to Elasto - hydrodynamic lubricated bearings. Introduction to 'EHL'
constant. Grubin type solution.to 'EHL'

Porous Bearings: Introduction to porous and gas lubricated bearings. Governing differential equation for gas lubricated bearings, Equations for porous bearings and working principal, Fretting phenomenon and its stages.

Unit –V08 HrsMagnetic Bearings: Introduction to magnetic bearings, Active magnetic bearings. Different equations
used in magnetic bearings and working principal. Advantages and disadvantages of magnetic bearings,
Electrical analogy, Magneto-hydrodynamic bearings

Course Outcomes:

After going through this course the student will be able to:

CO1: Demonstrate fundamentals of tribology, lubricants and methods of lubrication

CO2: Analyze bearings for load carrying capacity, frictional force and power loss

- **CO3:** Illustrate the different modes of lubrication system for various applications.
- **CO4:** Design the different bearing system such as antifriction bearings, magnetic bearings and porous bearings for various applications

Reference Books:

1	Theory and practice of Lubrication for Engineers, Dudley D.Fuller, New YorkCompany.1998
2	Principles and applications of Tribology, Moore, Pergamon press, 1975
3	Engineering Tribology, G W Stachowiak, A W Batchelor, Elsevier publication 1993.
4	Lubrication of Bearings - Theoretical principles and design, Radzimovsky, Oxford press Company,
	2000

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Total CIE (Q+1+A) is 20+30+30-100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

	Semester: I						
	DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS						
			(Group A: Core Elective)				
Course Code	:	18MCM1A3		CIE Marks	:	100	
Credits L: T: P	:	3:1:0		SEE Marks	:	100	
Hours	:	39L+26T		SEE Duration	:	3 Hrs	

Unit – I07 HrsIntroduction to Hydraulic System: Introduction, Basic hydraulic system, classification of hydraulic
motors, hydraulic pumps, Performance of hydraulic motors, Hydraulic actuators, types of hydraulic
actuators.hydraulic
hydraulic

Control Components in Hydraulic Systems: Introduction, Direction control valves, Solenoid actuated valve, Pilot operated valve, Rotary spool DCV, Pressure control valves, Hydraulic fuse, Flow control valve, graphic symbols.
Unit – II
08 Hrs

Olint – H	00 1115
Maintenance of Hydraulic Systems: Prime function of hydraulic fluids, desirable pro-	operties of
hydraulic fluids, general types of fluids, factors affecting the selection of fluids, sealing	g devices,
reservoir systems, filters and strainers, heat exchangers, pressure switch, wear of mov	ving parts,
troubleshooting of hydraulic systems.	
Unit – III	08 Hrs
Hydraulic circuit Design and Analysis: Control of a single acting cylinder, double actin	g cylinder,
regenerative circuit, counter balance valve applications, Hydraulic cylinder sequencin	g circuits,
automatic cylinder reciprocating systems, Locked cylinder using pilot check valves	, cylinder
synchronizing circuits, fail safe circuits.	•
Unit – IV	08 Hrs
Pneumatic Concepts: Introduction, comparison of hydraulics/pneumatics/and electrical s	system, air
compressor system, types of compressors, compressed air behavior, pneumatic actuators	
control valves, building a pneumatic circuits, application of logic valves.	
Design of Pneumatic Circuits: Speed control circuits, Application of time delay valve	s. Position
sensing in pneumatic cylinders, roller lever valve, pressure sensing in pneumatic circuit	
sequence valve, two cylinder movement, cascade method.	× 1
Unit –V	08 Hrs
Electro-Pneumatics: Introduction, Pilot operated solenoid valve, Electrical connection to th	
Electro-pneumatic circuit, Electrical limit switches and proximity switches, Relays, So	
converter, Concept of latching.	ienoia, 12
Servo System and PLC Applications in Pneumatics: Closed loop control with servo syste	m Hydro-
mechanical servo system, Electro-hydraulic servo system, Conventional valve vs proportio	
Proportional valve in hydraulic circuits, characteristics of proportional valve and servo v	
application in fluid power, logic in ladder logic diagram and Mnemonics, Timer- on del	
delay.	uy und on
uony.	
Course Outcomes:	
After going through this course the student will be able to:	
CO1: Describe the constructional features of hydraulic and pneumatic components	
CO2: Apply hydraulic and pneumatic controls in the design of automated controls.	
CO2. Apply hydraulic and pheumatic controls in the design of automated controls.	
CO3: Evaluate the design of hydraulic and pneumatic components for building a circuit	
CO4: Design the hydraulic and pneumatic based systems for industrial applications.	

R	eference Books:
1	Introduction to Hydraulics and Pneumatics, S Ilango, V Soundararajan, PHI Publication, ISBN-978-81-203-3079-5.
2	Hydraulics and Pneumatics, Jagadeesha T, I K International Publication, ISBN: 978-93-84588-90-8
3	Introduction to fluid power, James L Johnson, Cengage Learning, First Edition 2003, ISBN- 981- 243-661-8
4	Hydraulic and pneumatic controls, R Srinivasan, Tata McGraw hill, second edition,2010 ISBN - 978-81-8209-138-2

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: I						
	PRODUCT DATA MANAGEMENT					
			(Group B: Core Elective)			
Course Code	:	18MPD1B1		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 Hrs

Unit – I

10 Hrs

Centralized systems: Client Server Systems, Parallel Systems, Distributed Systems, Network Types, Parallel Database, Distributed Database, Security and Integrity, Standardization views.

Product Data Management: Complexity in Product Development, General Description of PDM Basic functionality of PDM: Information architecture, PDM System architecture, Applications used in PDM systems. Trends in PDM

Unit – II	11 Hrs
Product life cycle management - Need for PLM, Components of PLM, Product Data a	nd Product
workflow, Drivers for Change, The PLM Strategy, Developing a PLM Strategy, A Five-step	Process
Unit – III	11 Hrs
Document Management Systems: Document management and PDM, Document life cycl	le, Content
Management, Document management and related technologies, Document management re	sources on
the Internet Workflow Management in PDM: Structure Management, Engineerin	g Change
Management, Release Management, Version Management, Configuration Management	
Unit – IV	10 Hrs
Creating Product Structures: Part centric approach, CAD centric approach, Product	t Structure
configuration, Managing Product Structures, PDM resources on the Internet.	
Unit –V	10 Hrs
PDM Implementation Case Studies: Matrix One, Team Center, Windchill, Enovia. Standard	ds in PDM,
CM, SCM and CMM.	

Course Outcomes:

After going through this course the student will be able to:

CO1: Understanding the Product data base systems

CO2: Select the Product data base systems based on material and product

CO3: Analyzing the Product data base and Product life cycle for new products

CO4: Evaluate the parameters for Product data base considerations based on process

Reference Books:

1	Implementing and Integrating Product Data Management and Software Configuration Management - 20 - Ivica Cmkovic Ulf Asklund - Annita Persson Dahlqvist - Archtech House Publishers.
2	Product Data Management - Rodger Burden - Publisher: Resource Publishing- ISBN-10: 0970035225, ISBN-13: 978-0970035226 - 2003.
3	Windchill 8.0 – PDM Link User's Guide- Parametric Technology Corporation (PTC),2008
4	The AutoCAD Database Book – Accessing and Managing CAD Drawing Information - Galgotia Publications - Third Edition.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: I			
]	INTELLIGENT SYSTE			
			(Group B: Core Elective			
0 0 1			mon to CSE, MPD, MMI			100
Course Code	:	18MCE1B2		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 Hrs
			Unit – I			11 Hrs
Knowledge Repr	esen s, Us	tation and Se sing Inference I	Artificial Intelligence and arch: The Predicate Calo Rules to Produce Predicat	culus: The Propositi	onal	Calculus, Tl
	ate S	pace Search, U	space search: Introduction in the State Space to F			h the Predica
			Unit – II			10 Hrs
			l Climbing and Dynamic ity and Informedness, U	e		
Other Knowledg Scripts and Frame	ge R	epresentation	—	Networks, Concep	tual	10 Hrs Dependencie
			ing: Overview of Expert S nd Hybrid Systems	System Technology,	Rul	e-Based Expe
Planning: Introdu	iction	n to Planning, A	lgorithms as State-Space	Search, Planning gra	phs.	
			Unit – IV			10 Hrs
		-	to Weak Methods in Theorem Proving;	heorem Proving, Th	e G	eneral Proble
Uncertain Know Introduction to Unuse.			g: using Full-Joint Distribu	tion, Independence,	Baye	es' Rule and
Representing Kn Semantics of Ba Inference in Baye	yesi	an Networks,	in Domain: Efficient Representation oximate Inference in Baye Unit –V		Distri	butions, Exa
Introduction to	Lear	ning. Forme o	f Learning: Supervised lo	earning Unsupervise	-d I	
	einfo	preement Learni	ng; Parametric Models &			-
			ructures, Single Layer fee ng in multilayer networks,		wor	ks, Multi-Lay
Artificial Intellig			nds: The Science of Intel	lligent Systems, AI:	Curi	ent Challeng

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Explore various Artificial Intelligence problem solving techniques.
- **CO2:** Identify and describe the different AI approaches such as Knowledge representation, Search strategies, learning techniques to solve uncertain imprecise, stochastic and nondeterministic nature of AI problems.

CO3: Apply the AI techniques to solve various AI problems.

CO4: Analyse and compare the relative challenges pertaining to design of Intelligent Systems

Ref	erence Books:
1	Artificial Intelligence – Structures and Strategies for Complex problem Solving, George F Luger,
	6 th Edition, Pearson Publication, 2009, ISBN-10: 0-321-54589-3, ISBN-13: 978-0-321-54589-3
2	Artificial Intelligence A Modern Approach, Stuart Russel, Peter Norvig, 3 rd Edition, Pearson
	Publication, 2015, ISBN-13: 978-93-325-4351-5
3	Artificial Intelligence, Elaine Rich, Kevin Knight,3 rd Edition, Tata McGraw Hill, 2009, ISBN-10:
	0070087709, ISBN-13: 978-0070087705
4	Intelligent Systems-A Modern Approach, Grosan, Crina, Abraham, Ajith, Springer-Verlag Berlin
	Heidelberg 2011, ISBN 9783642269394, 2011.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

		Seme	ster: I			
	NON-TRADITIONAL MACHINING & TESTING					
		(Group B: C	ore Elective)			
Course Code	:	18MCM1B3	CIE Marks	:	100	
Credits L: T: P	:	4:0:0	SEE Marks	:	100	
Hours	:	52L	SEE Duration	:	3 Hrs	

Unit – I

10 Hrs

Introduction: Need for unconventional machining processes, classification of non-traditional machining processes.

Abrasive Jet Machining (AJM): Abrasive Jet Machining Setup – Gas propulsion System, Abrasive feeder, Machining Chamber, AJM Nozzle; Parametric Analysis – Stand-off-distance, Abrasive flow rate, Nozzle pressure, Mixing ratio; Process Capabilities.

Ultrasonic machining (USM): Ultrasonic Machining System, Mechanics of cutting, Model proposed by Shaw – Grain Throwing Model, Grain Hammering Model; Parametric Analysis, Process Capabilities.

Unit – II

11 Hrs

Water Jet Cutting (WJC): WJC Machine, Process Characteristics, Process Performance. Applications, Advantage and Limitations.

Abrasive Water Jet Machining (AWJM): Working Principle, AWJM Machine – Pumping System, Abrasive Feed System, Abrasive Water Jet Nozzle, Catcher; Process Analysis – Water Jet Pressure during Slotting, Water Flow Rate, Abrasive Flow Rate, Abrasive Particle Size, Abrasive Material, Cutting Parameters – Traverse Speed, Number of Passes, Stand-Off-Distance, Process Capabilities.

Abrasive Flow Machining (AFM): Working Principle of Abrasive flow Machining System Process Variables,

Magnetic Abrasive Finishing (MAF) – Working Principle of MAF, Material Removal and Surface Finish – Type and Size of Grains.

Unit – III11 HrsLASER Beam Machining (LBM): Production of LASERS, Working Principle of LASER Beam
Machining, Types of Lasers – Solid State Lasers, Gas Lasers; Process Characteristics. Applications,
Advantage and Limitations.

Plasma Arc Machining (PAM): Working Principle, Plasma Arc Cutting System, Elements of Plasma Arc Cutting System, Process Performance.

Electron Beam Machining (EBM): Working Principle, Electron Beam Machining System – Electron Beam Gun, Power Supply, Vacuum System and Machining Chamber; Process Parameters, Characteristics of the Process. Applications, Advantage and Limitations.

Unit – IV

10 Hrs

Electrochemical Machining (ECM): Electrolysis, ECM Principle, ECM Machine Tool-Power Source, Electrolyte supply and Cleaning System, Tool and Tool Feed System, Workpiece and Work Holding Device; Theory of ECM – Faraday's Laws of Electrolysis, Electrochemical Equivalent of Alloys, Material Removal Rate in ECM.

Chemical Processes: Introduction, Maskants – Cut and Peel, Screen Printing, Photoresist Maskant; Electropolishing – Introduction, Process Description, Process parameters, Process limitations, Applications, Advantage and Limitations.

Unit –V	10 Hrs
Non Destructive Testing: Scope and advantages of NDT, comparison of NDT with DT, cl	assifications
of NDT, introduction, principle, equipment, procedures and characteristics of Visual Inspective	ection, Eddy
Current Testing, Liquid Penetrant Testing, Magnetic Particle Testing and Radiographic Test	ing.

T 7

TT •4

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Explain the principle, mechanism of metal removal of various unconventional machining processes.
- **CO2:** Analyses the process parameters and their effect on the component machined on various unconventional machining processes and tested using NDT techniques.
- **CO3:** Apply the concept for different NTM and NDT concepts industry.
- **CO4:** Evaluate appropriate NTM and non-destructive techniques.

Reference Books:

1	Non Tradtional Machining Techniques, Bennedict, G. F., Marcel Decker, New York, 1990 ISBN 9780824773526
2	Modern Manufacturing Process, Pandey and Sha, Prentice Hall, New Delhi, 1997 ISBN: 978-81-7319-138-1
3	Unconventional Machining Process, Garry F. Benedict, Marcel Dekker Publication, New York, 1987. ISBN: 0-8247-7352-7
4	Non-Destructive Testing and Evaluation of Materials, I. J Prasad, C G K Nair, Tata McGraw Hill Education Private Limited

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

10 11

			SECOND SEMES Semester: II			
		ADV	ANCED SOLID ME			
Course Code	:	18MMD21	(Theory & Pract	CIE Marks	:	100 + 50
Credits L: T: P	•	4:0:1		SEE Marks	:	100 + 50 100 + 50
Hours	:	52L+26P		SEE Duration	:	3 Hrs
			Unit – I			10 Hrs
dimensions, Cauch stress transformation octahedral stresses	sis c hy's ion. s, M	stress principle Principal stress ohr's stress circ	tensors. State of s , direction cosines, st ses in three dimensio ele, construction of M	tress at a point, print tress components on an ns, stress invariants, E Iohr's Circle for two a	cipal n art quili and t	bitrary plane with brium equations hree dimensiona
stress systems, equ	111101	rium equations	<u>in polar coordinates fo</u> Unit – II	or three-dimensional sta	ate o	t stresses.
Strain, strain roset	tes. om S	Stress-strain rel Strain compone	lations, the generalise nts to stress compor n	e for Strain, equations ed Hooke's law, compa- nents. Strain energy in	tibili	ty conditions, the elastic body, St
			Unit – III			11 Hrs
of Yield locus, Y	Yield	I Surfaces of	Tresca and Von Mi	Stress space and Strain ses, Stress- Strain rel	spac	
of Yield locus, Y PrandtlReuss theor Principle of Sup theorem of Castig	Yield ry, S e rpo glian	l Surfaces of aint venant – V sition, Recipro o, Expressions	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci atically indeterminate s	spac ation	e, General nature n (Plastic Flow) al theorem, Firs
of Yield locus, Y PrandtlReuss theor Principle of Sup theorem of Castig	Yield ry, S e rpo glian	l Surfaces of aint venant – V sition, Recipro o, Expressions	Tresca and Von Mi on mises equations.	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci atically indeterminate s	spac ation	e, General nature n (Plastic Flow) al theorem, Firs
of Yield locus, Y PrandtlReuss theor Principle of Sup theorem of Castig Virtual Work, Sec Bending of Bean hypothesis, Shear curved beams, Der Torsion: Introduc Elliptical bars, To	ry, S erpo glian ond ns: cent flect	I Surfaces of aint venant – V sition, Recipro o, Expressions theorem of Cas Introduction, S re or Centre of ion of thick cur- , Torsion of gen n of equivalent	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – N Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci atically indeterminate s	spac lation proc truct g, E sec	e, General nature n (Plastic Flow) cal theorem, Firs cures, Theorem o 10 Hrs culer – Bernoull tions, Bending o 10 Hrs of Circular and embrane analogy
of Yield locus, Y PrandtlReuss theor Principle of Sup- theorem of Castig Virtual Work, Sec Bending of Bear hypothesis, Shear curved beams, Def Torsion: Introduc Elliptical bars, To Torsion of thin wa	Yield ry, S erpo glian ond ms: cent flect ction orsio alled f twi	I Surfaces of aint venant – V sition, Recipro o, Expressions theorem of Cas Introduction, S re or Centre of ion of thick cur , Torsion of ge n of equivalent I tubes, Torsion st and flexure co	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – N Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi of thin walled multi entre	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci- atically indeterminate s Mohr integrals. Asymmetrical Bendin ses in thin walled open a – Solid sections, Tor- ion of rectangular bars ple cell closed section	spac lation proc truct g, E sec	e, General nature n (Plastic Flow) cal theorem, Firs sures, Theorem o <u>10 Hrs</u> culer – Bernoull tions, Bending o <u>10 Hrs</u> n of Circular and embrane analogy ultiple connected
of Yield locus, Y PrandtlReuss theor Principle of Sup theorem of Castig Virtual Work, Sec Bending of Bean hypothesis, Shear curved beams, Def Torsion: Introduc Elliptical bars, To Torsion of thin was sections, Centre of	Yield ry, S erpo glian ond ms: cent flect ction orsio alled f twi	I Surfaces of aint venant – V sition, Recipro o, Expressions theorem of Cas Introduction, S re or Centre of ion of thick cur , Torsion of ge n of equivalent I tubes, Torsion st and flexure co	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – <u>N</u> Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi of thin walled multi	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci- atically indeterminate s Mohr integrals. Asymmetrical Bendin ses in thin walled open a – Solid sections, Tor- ion of rectangular bars ple cell closed section	spac lation proc truct g, E sec	e, General nature n (Plastic Flow) cal theorem, Firs cures, Theorem o 10 Hrs culer – Bernoull tions, Bending o 10 Hrs of Circular and embrane analogy
of Yield locus, Y PrandtlReuss theor Principle of Sup theorem of Castig Virtual Work, Sec Bending of Bear hypothesis, Shear curved beams, Det Torsion: Introduc Elliptical bars, To Torsion of thin was sections, Centre of Exercises:	Yield ry, S erpo glian ond ms: cent flect ction orsio allec f twi U	I Surfaces of aint venant – V sition, Recipro o, Expressions theorem of Cas Introduction, S re or Centre of ion of thick cur , Torsion of gen n of equivalent I tubes, Torsion st and flexure cu nit – VI Adva	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – N Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi of thin walled multi entre	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci- atically indeterminate s Mohr integrals. Asymmetrical Bendin ses in thin walled open a – Solid sections, Tor- ion of rectangular bars ple cell closed section	spac lation proc truct g, E sec	e, General nature n (Plastic Flow) cal theorem, Firs sures, Theorem o <u>10 Hrs</u> culer – Bernoull tions, Bending o <u>10 Hrs</u> n of Circular and embrane analogy ultiple connected
of Yield locus, Y PrandtlReuss theor Principle of Sup theorem of Castig Virtual Work, Sec Bending of Bean hypothesis, Shear curved beams, Der Torsion: Introduc Elliptical bars, To Torsion of thin was sections, Centre of Exercises: 1. Basic Stress a	Yield ry, S erpo glian ond ms: cent flect ction orsio allec f twi Un	I Surfaces of aint venant – V sition, Recipro o, Expressions theorem of Cas Introduction, S re or Centre of ion of thick curr , Torsion of gen n of equivalent I tubes, Torsion st and flexure co nit – VI Adva	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – N Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi of thin walled multi entre nced Solid Mechar	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci- atically indeterminate s Mohr integrals. Asymmetrical Bendin ses in thin walled open a – Solid sections, Tor- ion of rectangular bars ple cell closed section	spac lation proc truct g, E sec	e, General nature n (Plastic Flow) cal theorem, Firs sures, Theorem o <u>10 Hrs</u> culer – Bernoull tions, Bending o <u>10 Hrs</u> n of Circular and embrane analogy
of Yield locus, Y PrandtlReuss theor Principle of Sup- theorem of Castig Virtual Work, Sec Bending of Bean hypothesis, Shear curved beams, Der Torsion: Introduc Elliptical bars, To Torsion of thin was sections, Centre of Exercises: 1. Basic Stress a 2. Deflection an	Yield ry, S erpo glian ond ms: cent flect ction orsio allec f twi Un	I Surfaces of aint venant – V sition, Recipro o, Expressions theorem of Cas Introduction, S re or Centre of ion of thick cur , Torsion of gen n of equivalent I tubes, Torsion st and flexure cu nit – VI Adva	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – N Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi of thin walled multi entre nced Solid Mechar	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci- atically indeterminate s Mohr integrals. Asymmetrical Bendin ses in thin walled open a – Solid sections, Tor- ion of rectangular bars ple cell closed section	spac lation proc truct g, E sec	e, General natur n (Plastic Flow) al theorem, Firs sures, Theorem o 10 Hrs uler – Bernoull tions, Bending o 10 Hrs n of Circular and embrane analogy
of Yield locus, Y PrandtlReuss theor Principle of Sup- theorem of Castig Virtual Work, Sec Bending of Bear hypothesis, Shear curved beams, Det Torsion: Introduc Elliptical bars, To Torsion of thin was sections, Centre of Exercises: 1. Basic Stress a 2. Deflection an	Yield ry, S erpo glian ond ms: cent flect ction orsio allect f twi Un analy d St	I Surfaces of aint venant – V sition, Recipro o, Expressions theorem of Cas Introduction, S re or Centre of ion of thick cur , Torsion of ge n of equivalent I tubes, Torsion st and flexure co nit – VI Adva vsis ress Analysis in	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – N Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi of thin walled multi entre nced Solid Mechar	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci- atically indeterminate s Mohr integrals. Asymmetrical Bendin ses in thin walled open a – Solid sections, Tor- ion of rectangular bars ple cell closed section	spac lation proc truct g, E sec	e, General nature n (Plastic Flow) cal theorem, Firs sures, Theorem o <u>10 Hrs</u> culer – Bernoull tions, Bending o <u>10 Hrs</u> n of Circular and embrane analogy
of Yield locus, Y PrandtlReuss theor Principle of Sup theorem of Castig Virtual Work, Sec Bending of Bean hypothesis, Shear curved beams, Der Torsion: Introduc Elliptical bars, To Torsion of thin was sections, Centre of Exercises: 1. Basic Stress a 2. Deflection an 3. Nonlinear pla	Yield ry, S erpo glian ond ms: cent flect tion orsio alled f twi Un analy d St	I Surfaces of aint venant – V sition, Recipro o, Expressions theorem of Cas Introduction, S re or Centre of ion of thick curr , Torsion of gen n of equivalent I tubes, Torsion st and flexure co nit – VI Adva vsis ress Analysis in Deformation ar	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – N Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi of thin walled multi entre nced Solid Mechar	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci- atically indeterminate s Mohr integrals. Asymmetrical Bendin ses in thin walled open a – Solid sections, Tor ion of rectangular bars ple cell closed section hics Lab	spac lation proc truct g, E sec	e, General natur n (Plastic Flow) al theorem, Firs sures, Theorem o 10 Hrs uler – Bernoull tions, Bending o 10 Hrs n of Circular and embrane analogy
of Yield locus, Y PrandtlReuss theor Principle of Sup theorem of Castig Virtual Work, Sec Bending of Bean hypothesis, Shear curved beams, Der Torsion: Introduc Elliptical bars, To Torsion of thin was sections, Centre of Exercises: 1. Basic Stress a 2. Deflection an 3. Nonlinear pla 4. Two dimension	Yield ry, S erpo glian ond ms: cent flect flect ction rsio alled f twi Un analy d St astic onal	I Surfaces of aint venant – V sition, Recipro o, Expressions theorem of Cas Introduction, S re or Centre of ion of thick curr , Torsion of gen n of equivalent I tubes, Torsion st and flexure co nit – VI Adva vsis ress Analysis in Deformation ar	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – N Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi of thin walled multi entre nced Solid Mechar	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci- atically indeterminate s Mohr integrals. Asymmetrical Bendin ses in thin walled open a – Solid sections, Tor ion of rectangular bars ple cell closed section hics Lab	spac lation proc truct g, E sec	e, General natur n (Plastic Flow) al theorem, Firs sures, Theorem o 10 Hrs uler – Bernoull tions, Bending o 10 Hrs n of Circular and embrane analogy
of Yield locus, Y PrandtlReuss theor Principle of Sup theorem of Castig Virtual Work, Sec Bending of Bean hypothesis, Shear curved beams, Der Torsion: Introduc Elliptical bars, To Torsion of thin was sections, Centre of Exercises: 1. Basic Stress a 2. Deflection an 3. Nonlinear pla 4. Two dimension	Yield ry, S erpo glian ond ms: cent flect flect tion orsio alled f twi Un analy d St astic onal	I Surfaces of aint venant – V aint venant – V sition, Recipro o, Expressions a theorem of Cas Introduction, S re or Centre of ion of thick curr , Torsion of gen n of equivalent I tubes, Torsion st and flexure con nit – VI Adva vsis ress Analysis in Deformation ar problems (Plan posite materials	Tresca and Von Mi on mises equations. ocal Relation, Maxwe for Strain Energy, Sta stigliano, Maxwell – N Unit – IV Straight beams and Flexure, Shear stress ved bars. Unit –V eneral prismatic bars triangular bar, Torsi of thin walled multi entre nced Solid Mechar	Stress space and Strain ses, Stress- Strain rel ell-Betti-Rayleigh Reci- atically indeterminate s Mohr integrals. Asymmetrical Bendin ses in thin walled open a – Solid sections, Tor ion of rectangular bars ple cell closed section hics Lab	spac lation proc truct g, E sec	e, General natur n (Plastic Flow) al theorem, Firs sures, Theorem of 10 Hrs uler – Bernoull tions, Bending of 10 Hrs n of Circular and embrane analogy ultiple connected

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Identify the stress-strain relations in elastic and plastic conditions
- **CO2:** Examine bodies subjected to three dimensional stresses for the onset of failure based on failure criteria.
- **CO3:** Analyze deflections in beams subjected to different types of loads for elastic, elastoplastic and plastic conditions

CO4: Evaluate stresses in bars subjected to torsion for elastic, elastoplastic and plastic conditions

Reference Books:

L	
1	Advanced Mechanics of solids, L. S. Srinath, Tata Mc. Graw Hill, 2000, <u>ISBN</u> -13: 978-0070702608, 2009
2	Theory of Elasticity, S. P. Timoshenko, Mc. Graw Hill, 3rd edition, 1972, ISBN 978-0-13-223319-3
2	Engineering Plasticity, R A C Slater, The Mac Milan Press Ltd., 1 st Edition, 1977, ISBN 978-1-349-
3	02162-8
4	Applied Elasticity, C.T. Wang, Mc Graw Hill Book Co.ISBN 13: 9780070681255, 2003.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (O+T+A) is 20+50+30=100 Marks.**

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Continuous Internal Evaluation (CIE); Practical (50 Marks)

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

Scheme of Semester End Examination (SEE); Practical (50 Marks)

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Total marks: 100+50=150

Theory (100 Marks) + Practical (50 Marks) = Total Marks (150)

			Semester: II	[
		ADVANO	CED THEORY OF	VIBRATIONS		
Course Code	:	18MMD22		CIE Marks	:	100
Credits L: T: P	:	3:1:0		SEE Marks	:	100
Hours	:	39L+26T		SEE Duration	:	3 Hrs
			Unit – I			07 Hrs
Review of Mecha	nica	l Vibrations: B		vibration of single degree	e of	
				DOF-systems, Natural		
		1 0	0	xcitation, Arbitrary excit		
	- (2	Unit – II			08 Hrs
Vibration Contro	d: I	troduction. Vib	ration isolation the	ory, Vibration isolation	and	motion isolation
absorbers, Vibrati	on c	lampers. Vibrati	on Measurement a	analysis, shock isolation and applications : Introc	lucti	ion, Transducers
Vibration pickups,	Fre			rationexciters, Signal ana	lysi	
			Unit – III			
Vibrations of bea	ms: spec	mic Testing of n equation of mot ial problems, wa	nachines and Struct	ures, Experimental Moda , approximate methods, i brations of membranes:	initi	al value problem
Vibrations of bea forced vibrations, modal analysis, ap	ms: spec prox	mic Testing of n equation of mot ial problems, wa imate methods.	nachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis	, approximate methods,	initi	al value problem ations of motion
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of pla	ms: spec prox	mic Testing of n equation of mot ial problems, wa imate methods. equations of mot	nachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV	s, approximate methods, i brations of membranes: s, approximate methods	initi equ	al value problem ations of motion 08 Hrs
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of plat Random Vibratio function, Probabil	ms: spec prox tes: (ons : ity (mic Testing of n equation of mot ial problems, wa imate methods. equations of mot Random pheno distribution, Cor	nachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV mena, Time averag	, approximate methods, i brations of membranes:	initi equ	alysis. al value problem ations of motion 08 Hrs equency response
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of plan Random Vibratio function, Probabil transforms, FTs ar	ms: spec prox tes: ons ity d re	mic Testing of n equation of mot ial problems, wa imate methods. equations of mot Random pheno distribution, Con sponse.	nachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV mena, Time averag relation, Power sp Unit –V	s, approximate methods, is brations of membranes: s, approximate methods ging and expected value, pectrum and power spec	initi equ , Fre etral	al value problem ations of motion 08 Hrs equency response density, Fourier 08 Hrs
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of play Random Vibratio function, Probabil transforms, FTs ar Signature analys measuring and cor	ms: spec prox tes: (ons : ity (ad re iis a aditio	mic Testing of n equation of mot ial problems, wa imate methods. equations of mot Random pheno distribution, Con sponse. and preventive pning instrument	nachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV mena, Time averag relation, Power sp Unit –V maintenance, Vibr s.	a, approximate methods, is brations of membranes: a, approximate methods ging and expected value, bectrum and power spect	initi equ , Fre etral t, si	al value problem ations of motion 08 Hrs equency response density, Fourier 08 Hrs ignal generation
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of play Random Vibratio function, Probabil transforms, FTs ar Signature analys measuring and cor	ms: spec prox tes: (ons : ity (ad re iis a aditio	mic Testing of n equation of mot ial problems, wa imate methods. equations of mot Random pheno distribution, Con sponse. and preventive pning instrument	nachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV mena, Time averag relation, Power sp Unit –V maintenance, Vibr s.	s, approximate methods, is brations of membranes: s, approximate methods ging and expected value, pectrum and power spec	initi equ , Fre etral t, si	al value problem ations of motion 08 Hrs equency response density, Fourier 08 Hrs ignal generation
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of plat Random Vibratio function, Probabil transforms, FTs ar Signature analys measuring and cor Vibration testing Course Outcomes	ms: spec prox tes: ons ity d re ditio equ	mic Testing of n equation of mot ial problems, wa imate methods. equations of mot Random pheno distribution, Con sponse. and preventive pning instrument ipment: Signal a	nachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV mena, Time averag relation, Power sp Unit –V maintenance, Vibr s. analysis instruments	a, approximate methods, is brations of membranes: a, approximate methods ging and expected value, bectrum and power spect ration testing equipment s, Vibration signatures an	initi equ , Fre etral t, si	al value problem ations of motion 08 Hrs equency response density, Fourier 08 Hrs ignal generation
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of play Random Vibratio function, Probabil transforms, FTs ar Signature analys measuring and cor Vibration testing Course Outcomes After going throw	ms: spec prox tes: (ons : ity (d re its a ditio equ s: gh t	mic Testing of n equation of mot ial problems, wa imate methods. equations of mot Random pheno distribution, Con sponse. nd preventive oning instrument ipment: Signal a his course the s	nachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV mena, Time averag relation, Power sp Unit –V maintenance, Vibr s. analysis instruments	a, approximate methods, is brations of membranes: a, approximate methods ging and expected value, bectrum and power spectrum ation testing equipment s, Vibration signatures and to:	initi equ , Fre etral t, si	al value problem ations of motion 08 Hrs equency response density, Fourier 08 Hrs ignal generation
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of plat Random Vibratio function, Probabil transforms, FTs ar Signature analys measuring and cor Vibration testing Course Outcomes After going throw CO1: Construct	ms: spec prox tes: ons dity did re is additio equ s: gh t Equ	mic Testing of n equation of mot ial problems, wa imate methods. equations of mot Random pheno distribution, Cor sponse. nd preventive oning instrument ipment: Signal a his course the s ations of motion	nachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV mena, Time averag relation, Power sp Unit –V maintenance, Vibr s. analysis instruments tudent will be able based on free body	a, approximate methods, is brations of membranes: a, approximate methods ging and expected value, bectrum and power spect ration testing equipment s, Vibration signatures and to: diagrams	initi. equ , Free tral	alysis. al value problem ations of motion 08 Hrs equency response density, Fourier 08 Hrs ignal generation andards
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of plat Random Vibratio function, Probabil transforms, FTs ar Signature analys measuring and cor Vibration testing Course Outcomes After going throw CO1: Construct CO2: Analyse s	ms: spec prox tes: ons ity d re ditio equ s: gh t Equ yster	mic Testing of n equation of mot ial problems, wa imate methods. equations of mot Random pheno distribution, Con sponse. Ind preventive oning instrument ipment: Signal a his course the s ations of motion ns under free and	achines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV mena, Time averag relation, Power sp Unit –V maintenance, Vibr s. analysis instruments tudent will be able based on free body d forced vibrations	a, approximate methods, is brations of membranes: a, approximate methods ging and expected value, bectrum and power spect ation testing equipment s, Vibration signatures and s, Vibration signatures and to: diagrams for natural frequency of	initi. equ , Free tral	alysis. al value problem ations of motion 08 Hrs equency response density, Fourier 08 Hrs ignal generation andards
Vibrations of bea forced vibrations, modal analysis, ap Vibrations of play Random Vibratio function, Probabil transforms, FTs ar Signature analys measuring and cor Vibration testing Course Outcomes After going throw CO1: Construct CO2: Analyse s CO3: Evaluate N	ms: spec prox tes: ons ity datre is adition equ s: gh t Equ ysten Mech	mic Testing of n equation of mot ial problems, wa imate methods. equations of mot a Random pheno distribution, Con sponse. Ind preventive oning instrument ipment: Signal a his course the s ations of motion ns under free and annical Systems a	hachines and Struct ion, modal analysis ave propagation Vi ion, modal analysis Unit – IV mena, Time averag relation, Power sp Unit –V maintenance, Vibr s. analysis instruments tudent will be able based on free body d forced vibrations are using modal ana	a, approximate methods, is brations of membranes: a, approximate methods ging and expected value, bectrum and power spect ation testing equipment s, Vibration signatures and s, Vibration signatures and to: diagrams for natural frequency of	initia equ , Free ctral t, si ad st	alysis. al value problem ations of motion 08 Hrs equency response density, Fourie 08 Hrs ignal generation andards

Reference Books:

1	Mechanical Vibrations, S. Graham Kelly, Schaum's Outlines, Tata McGraw Hill, 2007.ISBN-10: 1439062129
2	Theory of Vibration with Application, William T. Thomson, Marie Dillon Dahleh, Prentice Hall Edition, ISBN, 0748743804, 2011
3	Vibrations & Acoustics, Sujatha, Tata McGraw Hill Edition, ISBN: 9780070148789, 2013
4	Mechanical Vibrations, S.S.Rao, Pearson Education, 4th ed., ISBN 978-0-13-212819-3, 2012

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
RESEARCH METHODOLOGY						
Course Code	:	18IM23		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	39L		SEE Duration	:	3 Hrs
			Unit – I			08 Hrs
Overview of Res	sear	ch: Research	and its types, identifying	and defining rese	arcł	problem and
			igns. Essential constituents			
			indomized, randomized bloc			
•	U		Unit – II			08 Hrs
Data and data col	lecti	on: Overview	of probability and data type	S		
			ethods of primary data colle		of	secondary data,
designing question				·		•
			pling and Non-probability sa	mpling		
10		e ,	Unit – III			08 Hrs
Processing and a	anal	ysis of Data: S	statistical measures of location	on, spread and shap	e, C	orrelation and
regression, Hype	othes	sis Testing and	ANOVA. Interpretation of	output from statistic	al s	oftware tools
			Unit – IV			08 Hrs
Advanced statist	ical	analyses: No	on parametric tests, Introdu	uction to multiple	reg	ression, factor
analysis, cluster a	inaly	vsis, principal	component analysis. Usag	ge and interpretation	on (of output from
statistical analysis	softv	ware tools.				
			Unit-V			07 Hrs
Essentials of Rep	ort	writing and E	thical issues: Significance	of Report Writing,	Di	fferent Steps in
			earch Report, Ethical iss			
Plagiarism	-		-			0
•	Discu	ssion of case s	studies specific to the domain	n area of specializat	ion	
			•	•		
Course Outcomes	•					

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain the principles and concepts of research types, data types and analysis procedures.

CO2: Apply appropriate method for data collection and analyze the data using statistical principles.

CO3: Present research output in a structured report as per the technical and ethical standards.

CO4: Create research design for a given engineering and management problem situation.

Reference Books:

1	Research Methodology Methods and techniques, Kothari C.R., New Age International Publishers,
1	4th edition, ISBN: 978-93-86649-22-5
2	Management Research Methodology, Krishnaswami, K.N., Sivakumar, A. I. and Mathirajan, M., Pearson Education: New Delhi, 2006. ISBN: 978-81-77585-63-6
2	The Research Methods Knowledge Base, William M. K. Trochim, James P. Donnelly, 3 rd Edition, Atomic Dog Publishing, 2006. ISBN: 978-1592602919
3	Atomic Dog Publishing, 2006. ISBN: 978-1592602919
4	Statistics for Management, Levin, R.I. and Rubin, D.S., 7th Edition, Pearson Education: New Delhi.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

				Semester: II			
	MINOR PROJECT						
Cours	Course Code:18 MDM 24CIE Marks:100						
Hrs/V	Veek	:	L:T:P	0:0:10	SEE Marks	:	100
Credi	Credits		02		SEE Duration	:	3 Hrs
				GUIDELINES	5		
1.	Each proje	ect g	group will consist of	maximum of two stu	idents.		
2.	Each stud	ent	/ group has to select	t a contemporary top	oic that will use the techr	ical	knowledge of
	their prog	ram	of study after intens	ive literature survey.			
3.	Allocation	n of	the guides preferably	y in accordance with	the expertise of the facult	y.	
4.	The numb	er o	of projects that a facu	lty can guide would	be limited to four.		
5.	The minor	r pro	pject would be perfor	rmed in-house.			
6.			1 5	must be preferably	carried out using the reso	urces	available in the
	departmen	nt/co	ollege.				
Cours	se Outcom	nes:					
After	going thr	oug	h this course the stu	idents will be able t	0		
	CO1: Conceptualize, design and implement solutions for specific problems.						
CO2:				ugh presentations an	d technical reports.		
CO3:			urce managements sl				
CO4 :	Synthes	size	self-learning, team v	vork and ethics.			

Scheme of Continuous Internal Examination (CIE)

Evaluation will be carried out in THREE Phases. The evaluation committee will comprise of FOUR members : guide, two senior faculty members and Head of the Department.

Activity	Weightage
Synopsis submission, Preliminary seminar for the approval of selected	20%
topic and Objectives formulation	
Mid-term seminar to review the progress of the work and	40%
documentation	
Oral presentation, demonstration and submission of project report	40%
	Synopsis submission, Preliminary seminar for the approval of selected topic and Objectives formulationMid-term seminar to review the progress of the work and documentation

****Phase wise rubrics to be prepared by the respective departments**

CIE Evaluation shall be done with weightage / distribution as follows:

• Selection of the topic & formulation of objectives	10%
• Design and simulation/ algorithm development/experimental setup	25%
• Conducting experiments / implementation / testing	25%
Demonstration & Presentation	15%
• Report writing	25%

Scheme for Semester End Evaluation (SEE):

The evaluation will be done by ONE senior faculty from the department and ONE external faculty member from Academia / Industry / Research Organization. The following weightages would be given for the examination. Evaluation will be done in batches, not exceeding 6 students.

1.	Brief write-up about the project	5%
2.	Presentation / Demonstration of the project	20%
3.	Methodology and Experimental Results & Discussion	25%
4.	Report	20%
5.	Viva Voce	30%

Semester: II								
			ATES AND SHELLS					
(Group C: Core Elective)								
Course Code	:	18MMD2C1	CIE Marks	:	100			
Credits L: T: P	:	4:0:0	SEE Marks	:	100			
Hours	:	52L	SEE Duration	:	3 Hrs			
Unit – I 10 Hrs								
Canaral Introduc	ior		lasticity- kinematics, compatibil	ity				
			ions- transformation of stresses,					
A .			icity- virtual work-external and i					
			equations- energy principles- H					
		total potential- applications.			F F			
· · ·		Unit – II			11 Hrs			
Classical Theory	Df	Plates: Plates as structural	elements- stress and moment res	ulta	nts- assumptions			
			and strains- equations of equi		A			
coordinates and in	pol	ar coordinates- boundary co	nditions – bending of rectangula	r pl	ates with various			
			d asymmetrical bending of circu					
of classical theory-	fin	ite element analysis						
		Unit – III			11 Hrs			
			cling of simply supported plates					
			biaxial compression of a plate- u					
			n two opposite edges- Levy's s		tion- buckling of			
plates with various	boı		ormulation- finite element analysi	is				
		Unit – IV		1	10 Hrs			
			ural flexural vibrations of rectan					
			s- vibration of plates with two p					
			with different boundary condit oundary conditions- transient an					
plates- finite eleme			oundary conditions- transient an	arys	sis of rectaligutat			
plates- inite cieffic	in a	Unit –V			10 Hrs			
Analysis of Thin F	las		lassification of shell surfaces- geo	ome				
			relations for shells of revolution					
			ution for thin cylindrical shells					
			ble curvature- geometric conside					
equilibrium- bendir	ng c	of spherical shells- vibration	of cylindrical shells- finite eleme	nt a	nalysis.			
Course Outcomes								
0 0 0	-	his course the student will						
	stru		-	ells				
CO2: Develop si								
CO2: Develop simple modifications to the membrane plate and shell theories								
	e s		ar motion of membrane, plateand	she	ell structures.			

Reference Books:

1	Theory and Analysis of Elastic Plates & Shells, Reddy, J.N., C.R.C. Press, NY, USA, 2nd Edition, ISBN 9780849384158
2	Theory and Analysis of Plates, Szilard, R., Prentice Hall Inc., 1999, ISBN 0-12-9353336-2
3	Theory of Plates and Shells, Timoshenko, S. and Krieger S.W, McGraw Hill Book Company, New York 1990, ISBN 0-13-913426-3
4	Stresses in shells, Wilhelm Flügge, Springer –Verlag, ISBN 978-3-662-01028-0.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II					
		DESIGN F	OR MANUFACTUR	E & ASSEMBLY				
			(Group C: Core Ele	ctive)				
Course Code : 18MPD2C2 CIE Marks : 100								
Credits L: T: P	:	4:0:0		SEE Marks	:	100		
Hours	:	52L		SEE Duration	:	3 Hrs		
			Unit – I			10 Hrs		
				: Steps in DFMA, Adv utomatic and Robotic Ass				
Hole and Shaft Ba	asis,	Three datum -	functional, machinin	& Tolerance, Limits, F g and manufacturing, ge for measurements, numer	ome			
tolerance, convent	1011a		Unit – II	or measurements, numer	icai	11 Hrs		
		<u> </u>		te the dimensions for Pa				
			ls, design principles. Unit – III	nents, mould design, n		11 Hrs		
Design for Inject	ion	Molding Ini		ems – injection subsyste	m o			
				for injection moulding				
				processes for moulds, o				
time.				processes for moulds, (-p • 1 •			
			Unit – IV			10 Hrs		
Design for Powe	der	Metallurgy P	rocesses: Introduction	on to PM process, ble	ndin	g and mixing		
				eatment, surface treatme				
				oling layout, capacity; si	nteri	ng furnace an		
influence of proces	ss an	nd materials par	ameters on shrinkage.			I		
			Unit –V			10 Hrs		
				r shearing, piercing, ben				
				and electric, sub-system	ns, ti	irret operation		
cycle time calculat		-				11		
	or sa	and casting, pre	essure die casting, inje	ction moulding, PM proc	cess	and sheet meta		
processes.								
Course Outcomes								
		his course the	student will be able t	·0·				
0 0	~	ncept of DFMA		.U•				
*		The second secon						
CO2: Apply eng	inee	ring products a	nd suggest suitable ma	anufacturing process				

CO3: Evaluate the influence of design, material and manufacturing processes on product assembly

CO4: Develop appropriate manufacturing and assembly processes for a given product

R	Reference Books:								
1	Product Design for Manufacture and Assembly, Geoffrey Boothroyd, Peter Dewhurst, Winston								
	Knight Marcel Dekker, Inc., Newyork - Second Revision, ISBN 0-8247-0584-X								
2	Designing for Manufacturing, Harry Peck, Pitman Publications, 1983, ISBN: 1-85233-810-5								
3	Dimensioning and Tolerance for Quantity Production, Merhyle F Spotts, Englewood Cliffs, Prentice Hall, 5th edition, ISBN: 2-95433-956-3								
4	Design for manufacturing – a structured approach, Corrado Colig, BH publishers, 3rd Edition, ISBN :978-0750673419								

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II							
COMPUTER APPLICATION IN DESIGN							
(Group C: Core Elective)							
Course Code	:	18MCM2C3		CIE Marks	:	100	
Credits L: T: P	:	4:0:0		SEE Marks	:	100	
Hours	:	52L		SEE Duration	:	3 Hrs	

TT */ T	10.11
Unit – I	10 Hrs
Points, lines and planar curves: Vector algebra	
Shapes inside a computer: Review of geometry and trigonometry, Points in a plane: Post	
Angles between lines - introducing the third dimension: Scalar products, Finding norm	al to planes:
Vector products, Following a line: Parameters	
Unit – II	11 Hrs
Lines in space: Vector equations: Lines in two-dimensional space, in three-dimensional bifferent parametric forms; Lines and common curves: Parametric and Cartesian forms: I non-linearity, Functions, The parabola, The circle, The ellipse, The circular helix	
Transformations: Matrix algebra, Tools for transformations: Matrices, Transformation Adding and subtracting matrices, Multiplying matrices; Moving in a plane: Scaling, re rotation: Matrices as geometric operators, Scaling position vectors, Reflecting position v axes, Rotating position vectors about the origin, Transforming polygons	eflection and rectors in the
Unit – III	11 Hrs
Combining transformations : Translations, Order in combining transformations, Specific of transformations, Translations, (3x3) Matrices for transformations in a plane Sizing Homogeneous vectors: Simple homogeneous vectors, General homogeneous vectors, Matri using homage vectors	g things up:
Useful manoeuvres : Non-standard rotations and reflections the viewing transformation: Standard, Rotation about an arbitrary point, Reflection in an arbitrary line, The viewing transformation	
The third dimension: Moving along rays, points at infinity and three-dimensional tran Geometrical insights using homogeneous vectors, Completing consideration of $(3*3)$ matrix infinity, Three dimensional transformations, Some specific (4x4) matrices, Local scaling, in the coordinate planes, Rotations about the coordinate axes, Translation, Overall conclusion	ces, Points at Reflections
Unit – IV	10 Hrs
Points of view: Projection and single point perspective: Projection from three dimensions of Orthographic projection, The need for perspective, Single point perspective, Perspective Tunnel perspective, To improve realism	

A greater sense of perspective: Two point and three point perspective: Improving perspective, Translation then single point perspective, Rotation then single point perspective, giving two points perspective, Rotation, translation then single point perspective improved two point perspective, Two rotations, translation then single point perspective, giving three point perspective, The three types of perspective-projection, Vanishing points and trace points

Space curves and surfaces: Differentiation, Slopes of lines and planar curves: Gradient functions: Lines and curves, Slope of a straight line from its Cartesian equation, Slope of a curve from its Cartesian equation, Practical rules for differentiation, Slope of a straight line from its vector equations

Slopes of space curves: Tangents and normal, Space curves, The tangent vector to a space curve, Tangents and normals for curves in a plane, Tangents and normals in three dimensions

Unit –V		10 Hrs
Curve fitting: Interpolation and shape function:	Lines and curves from real	objects, Linear
interpolation, Quadratic interpolation, Uniqueness		

Planes and surfaces: Bi parametric forms: sweeps and revolutions, Surface formulae and two parameters, Vector equations of planes, The vector equation of a plane, given two vectors in the plans,

The vector equation of a plane, given two unit vectors in the plane, The vector equation of a plane, given three points in a plane, Parameter lines and parameter planes, Plotting a plane, The implicit form of equation of a plane, Generating a swept surface, Generating a surface of revolution

Wire frame surfaces surface Tangents and normal: Partial differentiation: General surfaces, Forming a wire frame, Carved surfaces from the, Partial differentiation, Surface tangents and surface normal.

Piecewise surfaces Quadrilateral patches: Dividing up surfaces, A quadrilateral patch on a sphere, Bilinear patches, Linear Coons patches.

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Discuss the concepts of Computer Graphics in CAD in product development
- **CO2:** Apply the concepts of CAD in the manufacturing industry
- **CO3:** Analyze the concepts of computer Aided Design
- **CO4:** Evaluating the techniques involved in CAD

Reference Books:

1	Computer Graphics, Mathematical first steps, P A Eagerton and W S Hall, Prentice Hall,
	Europe,1998, ISBN: 0-13-599572-8
2	CAD/CAM Concepts and Applications, Chennakesava R Alavala, 1st Ed PHI, New Delhi, 2009
	ISBN 978-81-203-3340-6
3	CAD/CAM Principles and Applications, P.N. Rao, 3rd Ed., McGraw Hill, Education Pvt Ltd., New
	Delhi ISBN 0-07-058373-0
4	Mastering CAD/CAM, Ibrahim Zeid, 2nd Ed., TMH Publishing Company Limited., New Delhi,
	ISBN 0-07-0634334-3

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

		Seme	ster: II				
		ADVANCED MA	ACHINE DESIGN				
(Group D: Core Elective)							
Course Code	:	18MMD2D1	CIE Marks	:	100		
Credits L: T: P	:	4:0:0	SEE Marks	:	100		
Hours	:	52L	SEE Duration	:	3 Hrs		

Introduction: Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples. Fatigue of Materials: Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods ,Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features

Cint – II	11 nrs				
Stress-Life (S-N) Approach: S-N curves, the statistical nature of fatigue test data, General S-N					
behaviour, Mean stress effects, Different factors influencing S-N behaviour, S-N curve representation					
and approximations, Constant life diagrams, Fatigue life estimation using SN approach. Strain-Life(E-					
N)approach: Monotonic stress-strain behaviour ,Strain controlled test methods, Cyclic stress-strain					
behaviour, Strain based approach to life estimation, Determination of strain life fatigue properties,					
Mean stress effects, Effect of surface finish, Life estimation by ε-N approach.					
	4.4 . 11				

Unit – III11 HrsLEFM Approach: LEFM concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth,
Mean stress effects, Crack growth life estimation. Notches and their effects: Concentrations and
gradients in stress and strain, S-N approach for notched membranes, mean 30 stress effects and Haigh
diagrams, Notch strain analysis and the strain – life approach, Neuber's rule, Glinka's rule, and
applications of fracture mechanics to crack growth at notches.

 Unit – IV
 10 Hrs

 Fatigue from Variable Amplitude Loading: Spectrum loads and cumulative damage, Damage quantification and the concepts of damage fraction and accumulation, Cumulative damage theories, Load interaction and sequence effects, Cycle counting methods, Life estimation using stress life approach.

Unit -V10 HrsSurface Failure: Introduction, Surface geometry, Mating surface, Friction, Adhesive wear, Abrasive
wear, Corrosive wear, Surface fatigue spherical contact, Cylindrical contact, General contact, Dynamic
contact stresses, Surface fatigue strength

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Identify and explain the types of fractures of engineered materials and their characteristic features
- CO2: Develop a detailed understanding of S-N curves, S-N approach & behaviour
- **CO3:** Understand the differences in the classification of fracture mechanics (LEFM and EPFM) and how their corresponding parameters can be utilized to determine conditions under which engineering materials will be liable to fail catastrophically in service.
- CO4: Appreciate the theoretical basis of the experimental techniques utilized for surface failure analysis

Reference Books:

1	Metal Fatigue in engineering, Ralph I. Stephens, Ali Fatemi, Robert, Henry o. Fuchs, John wiley Newyork, Second edition. 2001. ISBN: 978-1-933489-67-4
1	Newyork, Second edition. 2001. ISBN: 978-1-933489-67-4
2	Failure of Materials in Mechanical Design, Jack. A. Collins, John Wiley, Newyork 1992. ISBN:
2	988-3-955783-62-2
3	Machine Design, Robert L. Norton, Pearson Education India, 2000, ISBN 0-06-008493-3
4	Fatigue of Materials, S.Suresh, Cambridge University Press, -1998

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II							
ROBOTICS & AUTOMATION							
(Group D: Core Elective)							
Course Code	:	18MCM2D2	CIE Marks	•••	100		
Credits L: T: P	:	4:0:0	SEE Marks	:	100		
Hours	:	52L	SEE Duration	:	3 Hrs		

Unit – I 10 Hrs Automation and Robotics - Historical Development, Definitions, Basic Structure of Robots, Robot Anatomy, Complete Classification of Robots, Fundamentals about Robot Technology, Factors related to use Robot Performance, Basic Robot Configurations and their Relative Merits and Demerits, Types of Drive Systems and their Relative Merits, the Wrist & Gripper Subassemblies. Concepts and Model about Basic Control System, Control Loops of Robotic Systems, PTP and CP Trajectory Planning, Control Approaches of Robots Unit – II 11 Hrs Kinematics of Robot Manipulator: Introduction, General Description of Robot Manipulator, Mathematical Preliminaries on Vectors & Matrices, Homogenous Representation of Objects, Robotic

Manipulator Joint Co-Ordinate System, Euler Angle & Euler Transformations, Roll-Pitch-Yaw(RPY) Transformation, Relative Transformation, Direct & Inverse Kinematics' Solution, D H Representation & Displacement Matrices for Standard Configurations, Geometrical Approach to Inverse Kinematics. Homogeneous Robotic Differential Transformation: Introduction, Jacobian Transformation in Robotic Manipulation

Unit – III Robotic Workspace & Motion Trajectory: Introduction, General Structures of Robotic Workspaces, Manipulations with n Revolute Joints, Robotic Workspace Performance Index, Extreme Reaches of Robotic Hands, Robotic Task Description. Robotic Motion Trajectory Design: - Introduction, Trajectory Interpolators, Basic Structure of Trajectory Interpolators, Cubic Joint Trajectories. General Design Consideration on Trajectories: 4-3-4 & 3-5-3 Trajectories, Admissible Motion Trajectories.

Unit – IV 10 Hrs Dynamics of Robotic Manipulators: Introduction, Bond Graph Modeling of Robotic Manipulators, Examples of Bond Graph Dynamic Modeling of Robotic Manipulator. Brief Discussion on Lagrange-Euler (LE) Dynamic Modeling of Robotic Manipulators: - Preliminary Definitions, Generalized Robotic Coordinates, Dynamic Constraints, Velocity & Acceleration of Moving Frames, Robotic Mass Distribution & Inertia Tensors, Newton's Equation, Euler Equations, The Lagrangian& Lagrange's Equations. Application of Lagrange-Euler (LE) Dynamic Modeling of Robotic Manipulators: -Velocity of Joints, Kinetic Energy T of Arm, Potential Energy V of Robotic Arm, The Lagrange L, Two Link Robotic Dynamics with Distributed Mass, Dynamic Equations of Motion for A General Six Axis Manipulator.

Autonomous Robot: Locomotion Introduction, Key issues for locomotion Legged Mobile Robots Leg configurations and stability Examples of legged robot locomotion Wheeled Mobile Robots Wheeled locomotion: the design space Wheeled locomotion: case studies Mobile Robot Kinematics Introduction Kinematic Models and Constraints Representing robot position Forward kinematic models Wheel kinematic constraints Robot kinematic constraints, Mobile Robot manoeuvrability Degree of mobility Degree of steerability Robot manoeuvrability.

Course Outcomes:

After going through this course the student will be able to:

- Analyze the manipulator design including actuator, drive and sensor issues CO1:
- CO2: Calculate the forward kinematics, inverse kinematics and Jacobian industrial robots
- CO3: Solve trajectory and dynamic related robotic problems
- CO4: Evaluate the different configurations and stability of autonomous robots

10 Hrs

11 Hrs

Unit –V

R	eference Books:
1	A Robot Engineering Textbook, Mohsen Shahinpoor, Harper & Row publishers, New York. ISBN:006045931X
2	Robotics, control vision and intelligence, Fu, Lee and Gonzalez, McGraw Hill International. ISBN:0070226253
3	Introduction to Robotics, John J. Craig, Addison Wesley Publishing, ISBN:0201543613
4	Autonomous mobile robots, Roland Illah R. Siegwart Nourbakhsh, The MIT Press Cambridge, Massachusetts London, England, 2004.ISBN:0262015358

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
	ADVANCED FINITE ELEMENT ANALYSIS				
	(Group D: Core Elective)				
Course Code	:	18MMD2D3	CIE Marks	:	100
Credits L: T: P	:	4:0:0	SEE Marks	:	100
Hours	:	52L	SEE Duration	:	3 Hrs

Unit – I 10 Hrs Basics of Finite Element Analysis : Shape function of the linear bar element, quadratic bar element, 2-D Constant strain triangular element, 2-D linear triangular element, 4 noded quadrilateral element, 9noded quadrilateral element and scrindipidy elements. Stiffness, traction and body force equations for 1-D 2 noded element, 2-D truss element, CST element and 4 noded quadrilateral elements and related problems. Unit – II 11 Hrs

	11 1113
Axisymmetric Solids: Structures of Revolution, Axisymmetric Solid Iso-P Ele	ements, Iso-P
Quadrilateral Ring Elements, A Complete Axisymmetric FEM Program. Axisy	ymmetric Solid
Benchmark Problems.	
Unit – III	11 Hrs

	11 1113
Part 3: General Solids: Solid Elements: Overview. The Linear Tetrahedron,	The Quadratic
Tetrahedron. The 8-Node Hexahedron. The 20-Node Hexahedron. Pyramid solid element	nts: a successful
application of morphing.	
TT •/ TT7	10 11

Unit – IV	10 Hrs
Dynamic Analysis using Finite Element Method: Introduction – vibrational problem	s – equations of
motion based on weak form - longitudinal vibration of bars - transverse vibration of bea	ams – consistent
mass matrices - element equations -solution of eigenvalue problems - vector itera	tion methods -
normal modes - transient vibrations - modeling of damping - mode superposition ted	chnique – direct
integration methods.	-
TT *4 TT	10 11

Unit –V	10 Hrs
Applications in Heat Transfer & Fluid Mechanics: One dimensional heat tran	sfer element -
application to one-dimensional heat transfer problems- scalar variable problems in 2	2-Dimensions –
Applications to heat transfer in 2- Dimension – Application to problems in fluid mechani	ics in 2-D

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain the fundamentals of finite element methods

CO2: Develop the knowledge to analyses, structures under static and dynamic conditions.

CO3: Selection of numerical techniques for solving engineering problems

CO4: Explore the use of finite element method knowledge to implement industrial project

Reference Books: Introduction to Finite Elements in Engineering, Chandrupatla T. R., and Belegundu, A.D., Prentice 1 Hall. 2003. An Introduction to the Finite Element Method, Reddy, J. N. 3rd Edition, McGraw-Hill 2 Science/Engineering/Math, 2005. 3 The Finite Element Method in Engineering, S. S. Rao, Fifth Edition, Elsevier Publications.

Advanced Finite Element Methods and Applicatons, Thomas Apel and Olaf Steinbach, Springer 4 Publications, ISBN 978-3-642-30315-9, 2013

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II					
	BUSINESS ANALYTICS				
	(Group G: Global Elective)				
Course Code	:	18CS2G01	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	39L	SEE Duration	:	3 Hrs

Unit – I08 HrsBusiness analytics: Overview of Business analytics, Scope of Business analytics, Business AnalyticsAnalyticsProcess, Relationship of Business Analytics Process and organization, competitive advantages of
Business Analytics.Business Analytics

Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling.

Unit – II				
Trendiness and Regression Analysis: Modelling Relationships and Trends in Data,	simple Linear			
Regression. Important Resources, Business Analytics Personnel, Data and models for	or Business			
analytics, problem solving, Visualizing and Exploring Data, Busines	s Analytics			
Technology.				
Unit – III	08 Hrs			

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, Predictive Analytics, Predicative Modelling, Predictive analytics analysis.

Unit – IV08 HrsForecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models,
Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear
Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables,
Selecting Appropriate Forecasting Models.08 Hrs

Unit –V07 HrsDecision Analysis: Formulating Decision Problems, Decision Strategies with and without Outcome,
Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

Course Outcomes:

After going through this course the student will be able to:

CO1: Explore the concepts, data and models for Business Analytics.

- **CO2:** Analyze various techniques for modelling and prediction.
- **CO3:** Design the clear and actionable insights by translating data.

CO4: Formulate decision problems to solve business applications

Reference Books:

1	Business Analytics Principles, Concepts, and Applications FT Press Analytics, Marc J.
	Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, 1 st Edition, 2014, ISBN-13: 978-
	0133989403, ISBN-10: 0133989402
2	The Value of Business Analytics: Identifying the Path to Profitability, Evan Stubs , John Wiley &
	Sons, ISBN:9781118983881 DOI:10.1002/9781118983881, 1st Edition 2014
	Business Analytics, James Evans, Pearsons Education 2 nd Edition, ISBN-13: 978-0321997821
3	ISBN-10: 0321997824
4	Predictive Business Analytics Forward Looking Capabilities to Improve Business, Gary Cokins and
	Lawrence Maisel, Wiley; 1 st Edition, 2013.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

Semester: II						
INDUSTRIAL & OCCUPATIONAL HEALTH AND SAFETY						
	(Group G: Global Elective)					
Course Code	:	18CV2G02		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	39L		SEE Duration	:	3 Hrs

UNIT – I	07 Hrs
Industrial safety: Accident, causes, types, results and control, mechanical and electrical haz	ards, types,
causes and preventive steps/procedure, describe salient points of factories act 1948 for health	and safety,
wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, S	Safety color
codes. Fire prevention and fire fighting, equipment and methods.	-
UNIT – II	09 Hrs
Occupational health and safety: Introduction, Health, Occupational health: definition,	Interaction
between work and health, Health hazards, workplace, economy and sustainable development	, Work as a
factor in health promotion. Health protection and promotion Activities in the workplace	e: National
governments, Management, Workers, Workers' representatives and unions, Communities, O	ccupational
health professionals. Potential health hazards: Air contaminants, Chemical hazards, Biologic	cal hazards,
Physical hazards, Ergonomic hazards, Psychosocial factors, Evaluation of health hazards	
measurement techniques, Interpretation of findings recommended exposure limits. Controlli	U U
Engineering controls, Work practice controls, Administrative controls. Occupational	l diseases:
Definition, Characteristics of occupational diseases, Prevention of occupational diseases.	
UNIT – III	09 Hrs
Hazardous Materials characteristics and effects on health: Introduction, Chemical Agen	U U
Liquids, Gases, Metals and Metallic Compounds, Particulates and Fibers, Alkalies and	
General Manufacturing Materials, Chemical Substitutes, Allergens, Carcinogens,	
Reproductive Hazards, Sensitizers and Teratogens, Recommended Chemical Exposure Limi	
Agents, Noise and Vibration, Temperature and Pressure, Carcinogenicity, Mutage	
Teratogenicity. Ergonomic Stresses: Stress-Related Health Incidents, Eyestrain, Repetiti	ve Motion,
Lower Back Pain, Video Display Terminals.	
UNIT – IV	07 Hrs
Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reductio	
lubricants-types and applications, Lubrication methods, general sketch, working and app	
Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication	
feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and facto	ors affecting
the corrosion. Types of corrosion, corrosion prevention methods.	05 11
UNIT – V	07 Hrs
Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, c	
repairing schemes, overhauling of mechanical components, over hauling of electrical motor	
troubles and remedies of electric motor, repair complexities and its use, definition, need	
advantages of preventive maintenance. Steps/procedure for periodic and preventive main	
i. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program an	
of preventive maintenance of mechanical and electrical equipment, advantages of	preventive
maintenance. Repair cycle concept and importance.	

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain the Industrial and Occupational health and safety and its importance.

- **CO2:** Demonstrate the exposure of different materials, occupational environment to which the employee can expose in the industries.
- CO3: Characterize the different type materials, with respect to safety and health hazards of it.
- **CO4:** Analyze the different processes with regards to safety and health and the maintenance required in the industries to avoid accidents.

Reference Books:

1	Maintenance Engineering Handbook, Higgins & Morrow, SBN 10: 0070432015 / ISBN
	13: 9780070432017, Published by McGraw-Hill Education. Da Information Services.
2	Maintenance Engineering Principles, Practices & Management, H. P. Garg, S. Chand and
	Company, New Delhi, 2009. ISBN:9788121926447
	Fundamental Principles of Occupational Health and Safety, Benjamin O. ALLI, Second edition,
3	International Labour Office – Geneva: ILO, 2008. ISBN 978-92-2-120454-1
4	Foundation Engineering Handbook, 2008, Winterkorn, Hans, Chapman & Hall London. ISBN:8788111925428.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
		MODELING	USING LINEAR PROC	GRAMMING		
		(0	Group G: Global Elective	e)		
Course Code	:	18IM2G03		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	39L		SEE Duration	:	3 Hrs

Unit – I	08 Hrs
Linear Programming: Introduction to Linear Programming problem	
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables	
Unit – II	08 Hrs
Advanced Linear Programming : Two Phase simplex techniques, Revised simplex method	d
Duality: Primal-Dual relationships, Economic interpretation of duality	
Unit – III	08 Hrs
Sensitivity Analysis: Graphical sensitivity analysis, Algebraic sensitivity analysis - change	s in RHS,
Changes in objectives, Post optimal analysis - changes affecting feasibility and optimality	
Unit – IV	08 Hrs
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solution	using North-
West corner, Least Cost, Vogel's Approximation Method, Optimality Methods,	Unbalanced
Transportation Problem, Degeneracy in Transportation Problems, Variants in Transportation	n
Problems.	
Unit –V	07 Hrs
Assignment Problem: Formulation of the Assignment problem, solution method of assignment	ment
problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Problem	n (TSP).

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain the various Linear Programming models and their areas of application.

CO2: Formulate and solve problems using Linear Programming methods.

CO3: Develop models for real life problems using Linear Programming techniques.

CO4: Analyze solutions obtained through Linear Programming techniques.

Reference Books:

1	Operation Research An Introduction, Taha H A, PHI, 8 th Edition, 2009, ISBN: 0130488089.
2	Principles of Operations Research – Theory and Practice, Philips, Ravindran and Solberg, John Wiley & Sons (Asia) Pvt Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0
3	Introduction to Operation Research, Hiller, Liberman, Nag, Basu, Tata McGraw Hill 9 th Edition, 2012, ISBN 13: 978-0-07-133346-7
4	Operations Research Theory and Application, J K Sharma, Pearson Education Pvt Ltd, 4 th Edition, 2009, ISBN 13: 978-0-23-063885-3.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II		
			ROJECT MANAGEMENT		
		(0	Group G: Global Elective)		
Course Code	:	18IM2G04	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	39L	SEE Duration	:	3 Hrs

Unit – I

08 Hrs

Introduction: Project Planning, Need of Project Planning, Project Life Cycle, Roles, Responsibility and Team Work, Project Planning Process, Work Breakdown Structure (WBS), Introduction to Agile Methodology.

Unit – II08 HrsCapital Budgeting: Capital Investments: Importance and Difficulties, phases of capital budgeting,
levels of decision making, facets of project analysis, feasibility study - a schematic diagram, objectives
of capital budgetingUnit – III08 Hrs

Unit – III08 HrsProject Costing: Cost of Project, Means of Finance, Cost of Production, Working Capital Requirement
and its Financing, Profitability Projections, Projected Cash Flow Statement, Projected Balance Sheet,
Multi-year Projections, Financial Modeling, Social Cost Benefit Analysis

 Unit – IV
 08Hrs

 Tools & Techniques of Project Management: Bar (GANTT) chart, bar chart for combined activities, logic diagrams and networks, Project evaluation and review Techniques (PERT) Critical Path Method (CPM), Computerized project management
 Vnit-V
 07 Hrs

Project Management and Certification: An introduction to SEI, CMMI and project management institute USA – importance of the same for the industry and practitioners. PMBOK 6 - Introduction to Agile Methodology, Themes / Epics / Stories, Implementing Agile.

Domain Specific Case Studies on Project Management: Case studies covering project planning, scheduling, use of tools & techniques, performance measurement.

Course Outcomes:

After going through this course the student will be able to:

CO1: Explain project planning activities that accurately forecast project costs, timelines, and quality.

- **CO2:** Evaluate the budget and cost analysis of project feasibility.
- **CO3:** Analyze the concepts, tools and techniques for managing projects.
- **CO4:** Illustrate project management practices to meet the needs of Domain specific stakeholders from multiple sectors of the economy (i.e. consulting, government, arts, media, and charity organizations

Reference Books:

1	Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, Tata
	McGraw Hill Publication, 8 th Edition, 2010, ISBN 0-07-007793-2.
2	Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK
	Guide), 5 th Edition, 2013, ISBN: 978-1-935589-67-9
3	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner,
	John Wiley & Sons Inc., 11 th Edition, 2013, ISBN 978-1-118-02227-6.
4	Project Management – Planning and Controlling Techniques, Rory Burke, John Wiley & Sons, 4th
	Edition, 2004, ISBN: 9812-53-121-1

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
			NERGY MANAGEM			
Course Code	-		Group G: Global Elect			100
Course Code	:	18CH2G05		CIE Marks	:	100
Credits L: T: P	:	3:0:0 39L		SEE Marks SEE Duration	:	100 3 Hrs
Hours	:	39L		SEE Duration	:	3 Hrs
			Unit-I			08 Hrs
Energy conserva	atio	n:				
			Energy audit and types	s of energy audit, I	Energ	y conservation
			s of cogeneration, Hea			
			Unit-II			08 Hrs
Wet Biomass Gas						
			ck for biogas generatio			
			gas generation, Factors			
biogas plants, Floa	ting	g drum plant and	fixed dome plant their a Unit –III	idvantages and disa	ivanta	ages 08 Hrs
Dry Biomass Gas	fia	•c •				00 1115
v			ermal gasification of bio	mass Classification	n of ø	asifiers Fixed
			on of up draught and dov			asiriers, 1 ixed
		1	Unit –IV	0.0		08 Hrs
Solar Photovoltai	c:					
Principle of photov	volta	aic conversion of	f solar energy, Types of	solar cells and fabri	cation	1.
Wind Energy:	tora	influoncing win	d, WECS & classification			
Classification, Pac	1015	inituencing win	Unit –V	JII.		07 Hrs
Alternative liquid	fne	els:				
			w materials, Pre-treatm	ent, Conversion pr	ocess	es with detailed
			ailed process, Gas purifi			
water hyacinth.						
Course Outcomes						
			tudent will be able to:			
COI: Understand	a th	e use alternate fu	els for energy conversio	on		
CO2: Develop a	sch	eme for energy	audit			
CO3: Evaluate th	ne fa	actors affecting b	biomass energy conversi	on		
		1 . 6				

CO4: Design a biogas plant for wet and dry feed

Reference Books:

1	Nonconventional energy, Ashok V Desai, 5 th Edition, 2011, New Age International (P) Limited,
	ISBN 13: 9788122402070.
2	Biogas Technology - A Practical Hand Book, Khandelwal K C and Mahdi S S, Vol. I & II, 1986,
	McGraw-Hill Education, ISBN-13: 978-0074517239.
3	Biomass Conversion and Technology, Charles Y Wereko-Brobby and Essel B Hagan, 1st Edition,
	1996, John Wiley & Sons, ISBN-13: 978-0471962465.
4	Solar Photovoltaics: Fundamental Applications and Technologies, C. S. Solanki, 2 nd Edition, 2009,
	Prentice Hall of India, ISBN:9788120343863.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

		Seme	ester: II		
		INDU	STRY 4.0		
		(Group G: C	lobal Elective)		
Course Code	:	18ME2G06	CIE Marks	:	100
Credits L: T: P	:	3:0:0	SEE Marks	:	100
Hours	:	39L	SEE Duration	:	3 Hrs

Unit – I	07 Hrs
Introduction: Industrial, Internet, Case studies, Cloud and Fog, M2M Learning Intelligence, AR, Industrial Internet Architecture Framework (IIAF), Data Management.	and Artificial
Unit – II	08 Hrs
The Concept of the IIoT: Modern Communication Protocols, Wireless Communication Proximity Network Communication Protocols, TCP/IP, API: A Technical Perspective Architecture.	e, Middleware
Unit – III	08 Hrs
Data Analytics in Manufacturing : Introduction, Power Consumption in manufacture Detection in Air Conditioning, Smart Remote Machinery Maintenance Systems with Kon Prediction in Steel Manufacturing.	
Internet of Things and New Value Proposition, Introduction, Internet of Things Example Creation Barriers: Standards, Security and Privacy Concerns.	es, IoTs Value
Advances in Robotics in the Era of Industry 4.0, Introduction, Recent Technological C Robots, Advanced Sensor Technologies, Artificial Intelligence, Internet of Robotic 7 Robotics.	
Unit – IV	08 Hrs
Additive Manufacturing Technologies and Applications: Introduction, Additive I	
(AM) Technologies, Stereo lithography, 3DP, Fused Deposition Modeling, Selective La	0.
Laminated Object Manufacturing, Laser Engineered Net Shaping, Advantages	of Additive
Manufacturing, Disadvantages of Additive Manufacturing.	
Advances in Virtual Factory Research and Applications, The State of Art, The Virtual Factory, Limitations of the Commercial Software	ctory Software
Unit –V	08 Hrs
Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0, Intro- Hardware and Software Technology, Industrial Applications of AR, Maintenance Collaborative Operations, Training.	oduction, AR
Smart Factories: Introduction, Smart factories in action, Importance, Real world smart way forward.	factories, The
A Roadmap: Digital Transformation, Transforming Operational Processes, Business Mo Operational Efficiency, Develop New Business Models.	odels, Increase
Course Outcomes:	
After going through this course the student will be able to:	
CO1: Understand the opportunities, challenges brought about by Industry 4.0 for organizations and individuals	or benefits of
CO2: Analyze the effectiveness of Smart Factories, Smart cities, Smart products and Sm	nart services

CO3: Apply the Industrial 4.0 concepts in a manufacturing plant to improve productivity and profits

CO4: Evaluate the effectiveness of Cloud Computing in a networked economy

R	eference Books:
1	INDUSTRY 4.0 THE INDUSTRIAL INTERNET OF THINGS, Alasdair Gilchrist, Apress
	Publisher, ISBN-13 (pbk): 978-1-4842-2046-7
2	Industry 4.0: Managing The Digital Transformation, Alp Ustundag, Emre Cevikcan, Springer, 2018
	ISBN 978-3-319-57869-9.
	Designing the industry - Internet of things connecting the physical, digital and virtual worlds,
3	Ovidiu Vermesan and Peer Friess, Rivers Publishers, 2016 ISBN 978-87-93379-81-7
4	The concept Industry 4.0- An Empirical Analysis of Technologies and Applications in Production
	Logistics, Christoph Jan Bartodziej, Springer Gabler, 2017 ISBN 978-3-6581-6502-4.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
		A	DVANCED MATERIA	LS		
		(0	Group G: Global Electiv	ve)		
Course Code	:	18ME2G07		CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	39L		SEE Duration	:	3 Hrs

Unit – I	07 Hrs
Classification and Selection of Materials: Classification of materials. Properties	s required in
Engineering materials, Criteria of selection of materials. Requirements / needs of advance	materials.
Unit – II	08 Hrs
Non Metallic Materials: Classification of n on metallic materials, Rubber: Properties, p	processing and
applications. Plastics: Thermosetting and Thermoplastics, Applications and properti	es. Ceramics:
Properties and applications. Adhesives: Properties and applications. Optical fibers: I	Properties and
applications. Composites : Properties and applications.	
Unit – III	08 Hrs
High Strength Materials: Methods of strengthening of alloys, Materials available for	high strength
applications, Properties required for high strength materials, Applications of high strength	materials
Unit – IV	08 Hrs
	00 111 5
Low & High Temperature Materials	00 111 5
Low & High Temperature Materials Properties required for low temperature applications, Materials available for low	L
o i	temperature
Properties required for low temperature applications, Materials available for low	temperature
Properties required for low temperature applications, Materials available for low applications, Requirements of materials for high temperature applications, Materials available	temperature
Properties required for low temperature applications, Materials available for low applications, Requirements of materials for high temperature applications, Materials available temperature applications, Applications of low and high temperature materials.	temperature ilable for high 08 Hrs
Properties required for low temperature applications, Materials available for low applications, Requirements of materials for high temperature applications, Materials available temperature applications, Applications of low and high temperature materials. Unit –V	temperature ilable for high 08 Hrs
Properties required for low temperature applications, Materials available for low applications, Requirements of materials for high temperature applications, Materials available temperature applications, Applications of low and high temperature materials. Unit –V Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and na	temperature ilable for high 08 Hrs
Properties required for low temperature applications, Materials available for low applications, Requirements of materials for high temperature applications, Materials available temperature applications, Applications of low and high temperature materials. Unit –V Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and na	temperature ilable for high 08 Hrs
Properties required for low temperature applications, Materials available for low applications, Requirements of materials for high temperature applications, Materials available temperature applications, Applications of low and high temperature materials. Unit –V Nanomaterials: Definition, Types of nanomaterials including carbon nanotubes and na Physical and mechanical properties, Applications of nanomaterials	temperature ilable for high 08 Hrs

CO1: Describe metallic and non-metallic materials

CO2: Explain preparation of high strength Materials

CO3: Integrate knowledge of different types of advanced engineering Materials

CO4: Analyse problem and find appropriate solution for use of materials.

Reference Books:

1	The Science & Engineering of Materials, Donald R. Askeland, and Pradeep P. Fulay, 5th Edition, Thomson, 2006, ISBN-13-978-0534553968
2	Nanotechnology, Gregory L. Timp, 1999th Editionmm Springer, 1999 ISBN-13: 978-0387983349
3	Material Science and Metallurgy, Dr. VD Kodgire and Dr. S V Kodgire, 42nd Edition 2018, Everest Publishing House ISBN NO: 81 86314 00 8
4	Processing and Fabrication of Advanced Materials, N Bhatnagar, T S Srivatsan, 2008, IK International, ISBN: 978819077702

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: II			
	CO		ERIALS SCIENCE A		NG	
Course Code	:	18CHY2G08	roup G: Global Electi	CIE Marks	:	100
Credits L: T: P	:	3:0:0		SEE Marks	:	100
Hours	:	39L		SEE Duration	:	3 Hrs
			Unit-I			08 Hrs
Introduction to	con	posite materia				
Classification ba (MMC), Cerami Interphases, Dist composites, Fibr	sed c n ribu ribu	on matrix- Poly natrix composite tion of constitue einforced compo	eed for composites of mer matrix composites (CMC) – Constitu- ents, Types of Reinfor posites. Fiber production to types of composites	tes (PMC), Meta uents of compos cements, Particle on techniques fo	l mat ites, rein	trix composites Interfaces and forced
	r r		Jnit – II			08 Hrs
Processes, Spray up processes – Compression Moulding – Injection Moulding – Resin Transfer Moulding – Pultrusion – Filament winding – Injection moulding. Glass fibre and carbon fibre reinforced composites (GFRP & CFRP). Laminates- Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Mechanical Testing of PMC- Tensile Strength, Flexural Strength, ILSS, Impact Strength- As per ASTM Standard. Applications of PMC in aerospace, automotive industries.						
	.с, a		Jnit -III			08 Hrs
Engineering cera – need for CM ceramics – non particles- fibres- isostatic pressing /carbon composi	mic C – ox wh g (H tes - dep	materials – prop ceramic matrix ide ceramics – iskers. Sintering IPing). Applicat - advantages of cosition of carbo	ecial composites perties – advantages – x – various types of Aluminium oxide – y – Hot pressing – Co ions of CMC in aero carbon matrix – limita on on carbon fibre pe	f ceramic matrix - silicon nitride old Isostatic Press space, automotive ations of carbon n	con - rei sing e ind natrix	nposites- oxide inforcements – (CIPing) – Hot ustries- Carbon & carbon fibre –
		1	J nit –IV			07 Hrs
Metal matrix compositesCharacteristics of MMC, various types of metal matrix composites alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of reinforcement – volume fraction – rule of mixtures. Processing of MMC – powder metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interface-measurement of interface properties- applications of MMC in aerospace, automotive industries.						
			Unit –V			08 Hrs
Nanocomposites Preparation of Potechniques. Cha	I Si . C olyn ract	gnificance of p lassification of ner Nano compo erization Of po	polymer Nano comp Nano fillers- nan osites by Solution, In- olymer nanocomposites of Polymer Nano composites of Polymer Nano comp	nolayers, nanotu -situ Polymerizati tes- XRD, TEM	ibes, ion ai I, SE	nanoparticles nd melt mixing EM and AFM

Course Outcomes:

After going through this course the student will be able to:

- **CO1:** Understand the purpose and the ways to develop new materials upon proper combination of known materials.
- CO2: Identify the basic constituents of a composite materials and the list the choice of materials available
- **CO3:** Will be capable of comparing/evaluating the relative merits of using alternatives for important engineering and other applications.

CO4: Get insight to the possibility of replacing the existing macro materials with nanomaterials.

Reference Books:

1	Composite Materials Science and Engineering, Krishan K Chawla, 3 rd Edition,
	Springer - verlag Gmbh, 2012, ISBN: 978-0387743646
2	The Science and Engineering of Materials, K Balani, Donald R Askeland, 6 th Edition-
	Cengage, Publishers, 2013, ISBN: 13: 978-8131516416
3	Polymer Science and Technology, Joel R Fried, 2 nd Edition, Prentice Hall, 2014, ISBN: 13:
	978-0137039555
4	Nanomaterials and nanocomposites, Rajendra Kumar Goyal, 2 nd Edition, CRC

Press-Taylor & Francis, 2010, ISBN: 10-9781498761666, 1498761666

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project.

Total CIE (Q+T+A) is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

			Semester: I				
			IYSICS OF MAT Froup G: Global F				
Course Code	:	18PHY2G09	rioup G. Giobai I	CIE Marks	:	10)0
Credits L: T: P	:	3:0:0		SEE Marks	:)0
Hours	:	39L		SEE Duration	:	3	Hrs
			Unit – I				08 Hrs
Interplanar distant Powder method, B lattice, Crystal def Dielectric Materi Basic concepts, Frequency Depe Qualitative discu Dielectric streng Applications of Transformers, D	ice ects als Lande gth, Sol	acking fraction, a g's spectrometer, Point, Line, Plan gevin's Theory once of total p on of Internal Dielectric Bread	Structure of differed Qualitative Analys ar and Volume def Unit – II of Polarisation, ' olarization (pola Field and Claus eakdown, Breakd aterials in capad	stals systems, crystal pl ent crystals-NaCl and D sis of Crystal structure us fects. Types of Polarisation, arizability as a funct sius Mossotti, Dielec down mechanisms in citors and Liquid insu Direct and Inverse F	iamor sing 2 Dip ion etric n so ulatir	nd, I KRD olar of 1 loss lid ng n	Bragg's law, p, Reciprocal 08 Hrs relaxation, frequency), spectrum, dielectrics, naterials in ctric effect,
materials- PZT, I Magnetic Materia Review of Dia, Pa Magnetostriction,	PVI als ara a Ant	DF, Ferroelectric and Ferromagneti i-ferromagnetism	ization, Piezolel ity, Barium titana Unit – III c materials, Weiss Ferrimagnetsim,	ectricty in Quartz, Va ate, Poling in Ceramics theory of Ferromagnetic Soft and Hard magnetic	ariou s. sm, H c mat	Iyste	08 Hrs eresis effect, ls, examples
Magnetic Materia Review of Dia, Pa Magnetostriction, and applications	PVE als ara a Ant in T	DF, Ferroelectric and Ferromagnetia i-ferromagnetism Transformer cores	ization, Piezolel ity, Barium titana Unit – III c materials, Weiss Ferrimagnetsim, s and Magnetic s High Temperature	ectricty in Quartz, V ate, Poling in Ceramics theory of Ferromagnetic	ariou s. sm, H c mat	Iyste erial	08 Hrs eresis effect, ls, examples , properties, a Cryotron
materials- PZT, I Magnetic Materia Review of Dia, Pa Magnetostriction, and applications Types of Supercor and SQUID.	PVE als ara a Ant in T aduc	DF, Ferroelectric and Ferromagnetism i-ferromagnetism iransformer corestors, BCS theory, erials	ization, Piezolel ity, Barium titana Unit – III c materials, Weiss , Ferrimagnetsim, s and Magnetic s High Temperature Unit – IV	ectricty in Quartz, Va ate, Poling in Ceramics theory of Ferromagnetic Soft and Hard magnetic torage devices, Superco Superconductors, Appli	ariou s. sm, H c mat onduc icatio	Hyste erial ctors ns ir	08 Hrs eresis effect, ls, examples , properties, n Cryotron 07 Hrs
materials- PZT, I Magnetic Materia Review of Dia, Pa Magnetostriction, and applications Types of Supercor and SQUID. Semiconducting M Semiconductors-D quantum wires and and Lithography, phase condensation Novel Materials Smart materials-si mechanical load of	PVI als ara a Ant in T iduc Mate irec 1 do Bor n, Pe hape n ph tech	DF, Ferroelectric and Ferromagnetism i-ferromagnetism iransformer corestors, BCS theory, erials t and Indirect batts, size dependent tom up approactory olymer semi-cond e memory alloys ase transformation nique-Differntial	ization, Piezolel ity, Barium titana Unit – III c materials, Weiss , Ferrimagnetsim, and Magnetic s High Temperature Unit – IV nd gap semicondu properties, Top de h, fabrication pro luctors-Photo cond Unit –V , Austenite and M n, Pseudoeleasticit	ectricty in Quartz, Va ate, Poling in Ceramics theory of Ferromagnetic Soft and Hard magnetic torage devices, Superco	ariou s. sm, H c mat onduc icatio uantu on pr expar ations t of resis,	Hyste erial ctors in im c oces nsion s. temp Sup	08 Hrs eresis effect, ls, examples properties, a Cryotron 07 Hrs confinement- s by Milling and vapor 08 Hrs perature and per elasticity.
materials- PZT, I Magnetic Materia Review of Dia, Pa Magnetostriction, and applications Types of Supercor and SQUID. Semiconducting M Semiconductors-D quantum wires and and Lithography, phase condensation Novel Materials Smart materials-st mechanical load of Characterization to Nitinol, CuAlNi al Biomaterials-Meta nanotubes, Graphy Course Outcomes After going throw CO1: Apply th CO2: Apply th	PVI als ara a Ant in T iduc VIat irec 1 do Bou n, Pu irec 1 do Bou n irec 1 do Bou n irec irec 1 do Bou n irec irec irec irec irec irec irec irec	DF, Ferroelectric and Ferromagnetism iransformer corestors, BCS theory, erials t and Indirect bats, size dependent tom up approace olymer semi-cond e memory alloys ase transformation nique-Differntial and applications. ceramic and p Properties and A chis course the st inciples of Physic owledge of Physic	ization, Piezolel ity, Barium titana Unit – III c materials, Weiss , Ferrimagnetsim, s and Magnetic s High Temperature Unit – IV nd gap semicondu properties, Top de h, fabrication pro uctors-Photo cond Unit – V , Austenite and M n, Pseudoeleasticit Scanning calorin olymer biomateria pplications.	ectricty in Quartz, Va ate, Poling in Ceramics theory of Ferromagnetic Soft and Hard magnetic torage devices, Superco e Superconductors, Applic actors, Importance of Q own approach, Fabricatic cess by vapour phase uctive polymers, Applica Martensite phase, Effect ry, Transformation hystem netry, Preparation tech als, Titanium and Titat	ariou s. sm, H c mat onduc icatio uantu on pr expan ations t of resis, nique	Hyste erial ctors ns ir um c occes nsion s. temp Suppe- sp	08 Hrs eresis effect. Is, examples , properties n Cryotron 07 Hrs onfinement- s by Milling n and vapor 08 Hrs perature and er elasticity pin coating

R	eference Books:
1	Solid State Physics, S O Pillai, 6 th Edition, New Age International Publishers, ISBN 10-8122436978.
2	Introduction to Solid State Physics, C.Kittel, 7 th Edition, 2003, John Wiley & Sons, ISBN 9971-51- 180.
3	Engineering Physics, Dr.M N Avadhanulu, Dr. P G Kshirsagar, S Chand Publishing, Reprint 2015.
4	The Science and Engineering of Materials, Askeland, Fulay, Wright, Balanai, 6 th Edition, Cengage Learning, ISBN-13:978-0-495-66802-2.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

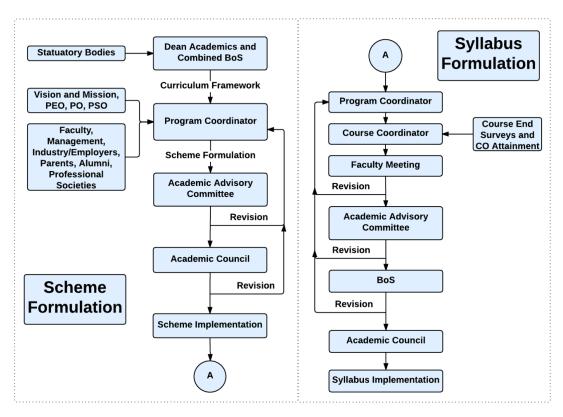
Semester: II						
ADVANCED STATISTICAL METHODS						
	(Group G: Global Elective)					
Course Code	:	18MAT2G10	CIE Marks	:	100	
Credits L: T: P	:	3:0:0	SEE Marks	:	100	
Hours	:	39L	SEE Duration	:	3 Hrs	

 Unit – I
 07 Hrs

 Sampling Techniques: Concepts of random sampling from finite and infinite populations, Simple random sampling (with replacement and without replacement), Sampling distribution of proportions, Expectation and standard error of sample mean and proportion, Sampling distributions of differences and sums.

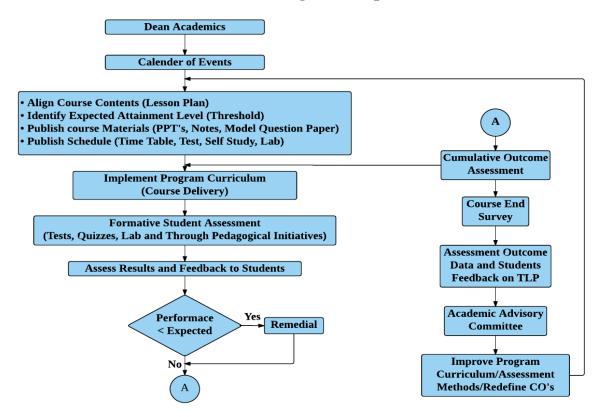
Unit – II	08 Hrs
Estimation: Point estimation, Estimator and estimate, Criteria for good	estimates -
unbiasedness, consistency, efficiency and sufficiency, Method of moment's es	timation and
maximum likelihood estimation, Confidence intervals-population mean (large samp	le).
Unit – III	08 Hrs
Tests of Hypothesis: Principles of Statistical Inference, Formulation of the problems w	ith examples.
Simple and composite hypotheses. Null and alternative hypotheses. Tests - type I and	type II error,
Testing of mean and variance of normal population (one sample and two samples), Exact ar	nd asymptotic
tests of proportions. Chi squared test for goodness of fit (Relevant case studies).	
Unit – IV	07 Hrs
Linear Statistical Models: Definition of linear model and types, One way ANOVA	and two way
ANOVA models-one observation per cell, multiple but equal number of observation per c	ell (Relevant
case studies).	
Unit –V	09 Hrs
Linear Regression: Simple linear regression, Estimation of parameters, Properties of	least square
estimators, Estimation of error variance, Multivariate data, Multiple linear regressions,	Multiple and
partial correlation, Autocorrelation-introduction and plausibility of serial dependence	e, sources of
autocorrelation, Durbin-Watson test for auto correlated variables.	

Course Outcomes:

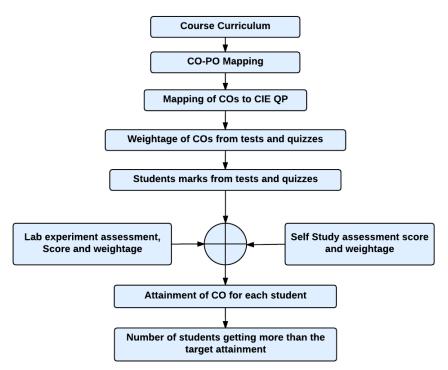

After going through this course the student will be able to:

- **CO1:** Identify and interpret the fundamental concepts of sampling techniques, estimates and types, hypothesis, linear statistical models and linear regression arising in various fields engineering.
- **CO2:** Apply the knowledge and skills of simple random sampling, estimation, null and alternative hypotheses, errors, one way ANOVA, linear and multiple linear regressions.
- **CO3:** Analyze the physical problem to establish statistical/mathematical model and use appropriate statistical methods to solve and optimize the solution.
- **CO4:** Distinguish the overall mathematical knowledge gained to demonstrate the problems of sampling techniques, estimation, tests of hypothesis, regression and statistical model arising in many practical situations

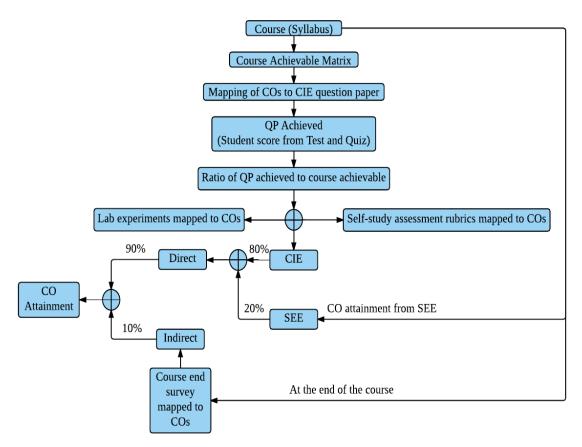
R	eference Books:
1	Fundamentals of Statistics (Vol. I and Vol. II), A. M. Goon, M. K. Gupta and B. Dasgupta, World
	Press Private Limited, 3rd Edition, 1968, ISBN-13: 978-8187567806.
2	Applied Statistics and Probability for Engineers, D. C. Montgomery and G. C. Runger, John Wiley
	& Sons, Inc., 3rd Edition, 2003, ISBN 0-471-20454-4.
	Fundamentals of Mathematical Statistic - A Modern Approach, S.C. Gupta, V.K. Kapoor, S Chand
3	Publications, 10th Edition, 2000, ISBN 81-7014-791-3.
4	Regression Analysis: Concepts and Applications, F. A. Graybill and H. K. Iyer, Belmont, Calif.:
	Duxbury Press, 1994, ISBN-13: 978-0534198695.

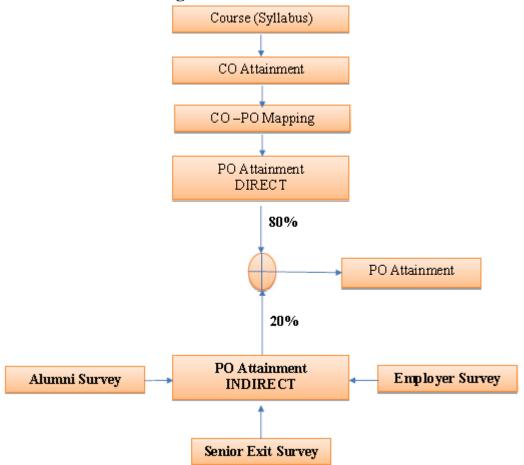

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:



Curriculum Design Process


Academic Planning And Implementation


Process For Course Outcome Attainment

Final CO Attainment Process

RV College of Engineering®

Program Outcome Attainment Process