

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysuru Road Bengaluru – 560059

Scheme and Syllabus of III & IV Semester (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in COMPUTER INTEGRATED MANUFACTURING

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work and Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysore Road Bengaluru – 560059

Scheme and Syllabus of III & IV Semester (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in COMPUTER INTEGRATED MANUFACTURING

DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering.
- Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- Facilitating faculty development through continuous improvement programs.
- Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs

Program Outcomes (PO)

M. Tech. in Computer Integrated Manufacturing graduates will be able to:

- PO1: An ability to independently carry out a research / investigation and development work to solve practical problems related to Computer Integrated Manufacturing
- PO2: An ability to write and present a substantial technical report / document
- PO3: An ability to demonstrate a degree of mastery over the areas of Computer Integrated Manufacturing. The mastery should be at a level higher than the requirements in the BE Mechanical Engineering and allied programs
- PO4: An ability to use latest technology for the design and analysis of CNC based manufacturing and automation systems
- PO5: An ability to adapt technical, safety, ethical and environmental factors in the design of Intelligence systems
- PO6: An ability to perform interdisciplinary teams with social and management skills with a commitment to lifelong learning

ABBREVIATIONS

Sl. No.	Abbreviation	Acronym		
1.	VTU	Visvesvaraya Technological University		
2.	BS	Basic Sciences		
3.	CIE	Continuous Internal Evaluation		
4.	SEE	Semester End Examination		
5.	CE	Professional Elective		
6.	GE	Global Elective		
7.	HSS	Humanities and Social Sciences		
8.	CV	Civil Engineering		
9.	ME	Mechanical Engineering		
10.	EE	Electrical & Electronics Engineering		
11.	EC	Electronics & Communication Engineering		
12.	IM	Industrial Engineering & Management		
13.	EI	Electronics & Instrumentation Engineering		
14.	СН	Chemical Engineering		
15.	CS	Computer Science & Engineering		
16.	TE	Telecommunication Engineering		
17.	IS	Information Science & Engineering		
18.	BT	Biotechnology		
19.	AS	Aerospace Engineering		
20.	PY	Physics		
21.	CY	Chemistry		
22.	MA	Mathematics		
23.	MCA	Master of Computer Applications		
24.	MST	Structural Engineering		
25.	MHT	Highway Technology		
26.	MPD	Product Design & Manufacturing		
27.	MCM	Computer Integrated & Manufacturing		
28.	MMD	Machine Design		
29.	MPE	Power Electronics		
30.	MVE	VLSI Design & Embedded Systems		
31.	MCS	Communication Systems		
32.	MBS	Bio Medical Processing Signal & Instrumentation		
33.	MCH	Chemical Engineering		
34.	MCE	Computer Science & Engineering		
35.	MCN	Computer Network Engineering		
36.	MDC	Digital Communication		
37.	MRM	Radio Frequency and Microwave Engineering		
38.	MSE	Software Engineering		
39.	MIT	Information Technology		
40.	MBT	Biotechnology		
41.	MBI	Bioinformatics		

CONTENTS

SEMESTER : III							
Sl. No.	Course Code	Course Title	Page No.				
1.	18MCM31	Digital Manufacturing	01				
2.	18MCM32	Internship	03				
3.	18MCM33	Major Project : Phase I	05				
4.	18XXX3EX	Elective E	06 – 11				
	GROUP E: PROFESSIONAL ELECTIVES						
1.	18MCM3E1	Additive Manufacturing	06				
2.	18MPD3E2	Surface Engineering	08				
3.	18MCM3E3	Advanced Manufacturing Practices	10				
SEMESTER : IV							
Sl. No.	Course Code	Course Title	Page No.				
1.	18MCM41	Major Project : Phase II	12				
2.	18MCM42	Technical Seminar	13				

RV COLLEGE OF ENGINEERING[®], BENGALURU - 560059 (Autonomous Institution Affiliated to VTU, Belagavi)

DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech in COMPUTER INTEGRATED MANUFACTURING

THIRD SEMESTER CREDIT SCHEME								
Sl. No.	Come Colo	Course Title	BoS	Credit Allocation				
	Course Code			L	Т	Р	Credits	
1	18MCM31	Digital Manufacturing	ME	4	1	0	5	
2	18MCM32	Internship	ME	0	0	5	5	
3	18MCM33	33 Major Project : Phase I		0	0	5	5	
4	18XXX3EX Elective E M		ME	4	0	0	4	
		8	01	10	19			
		Total Number of Hours	8	2	20			

SEMESTER : III					
GROUP E: PROFESSIONAL ELECTIVES					
Sl. No.	Sl. No. Course Code Course Title				
1	18MCM3E1	Additive Manufacturing			
2	18MPD3E2	Surface Engineering			
3	18MCM3E3	Advanced Manufacturing Practices			

FOURTH SEMESTER CREDIT SCHEME								
Sl. No.	Course Code Course Title		D-C	Credit Allocation				
	Course Code	Course Thie	B05	L	Т	Р	Credits	
1	18MCM41	Major Project : Phase II	ME	0	0	20	20	
2	18MCM42 Technical Seminar M			0	0	2	2	
Total number of Credits				0	0	22	22	
Total Number of Hours / Week				0	0	44		

	SEMESTER III							
		DIGITA	L MANUFACTU	RING	1			
Course Code	:	18MCM31		CIE Marks	:	100		
Credits: L:T:P	:	4:1:0		SEE Marks	:	100		
Total Hours	:	52L		SEE Duration	:	3 Hrs.		
		١	Unit-I				10 Hrs	
Introduction: De Methods, Architect Internet, Case studi Design for Additiv Objectives, CAD T	Introduction: Development of Manufacturing Engineering, Status of Digital Manufacturing, Research Methods, Architecture, Organization Model and Function Model of Digital Manufacturing System, Industrial Internet, Case studies Design for Additive Manufacturing: Design for Manufacturing and Assembly, Core DFAM Concepts and Objectives, CAD Tools for AM. Synthesis Methods							
		τ	U nit-II				10 Hrs	
Computing Manuf Discrete Model of Modeling in Manuf Manufacturing In Integration, Sharing of Sharing Manufact	facturin Manufa facturing nformate g and Se cturing H	ng: Virtual Prototyp acturing Computing g Computing, Comp tics: Information curity of Manufactu Resources.	ing, Reverse Engin , Information Mod utational Geometry Characteristics, A uring Information.	neering, Application lel of Manufacturin y Activities and Ma Integration Model,	n of ng c nufa Prir	Reverse Eng omputing, C acturing Inf aciple and M	gineering, Geometric Formatics, echanism	
		U	nit -III				12 Hrs	
Applied to Digital Manufacturing, Knowledge Reasoning in Engineering Design, Intelligent Knowledge- Based Manufacturing System, Self-Learning of Manufacturing System, Adaptation of Manufacturing System, The Concepts and Features of Intelligent Manufacturing, Multi-Agent Manufacturing System. Future Development of Digital Manufacturing Science: The Precision of Digital Manufacturing, The Extremalization of Digital Manufacturing, The Environmental Protection of Digital Manufacturing. Unit -IV 10 Hrs The Concept of the IIoT: Modern Communication Protocols, Wireless Communication Technologies, Proximity Network Communication Protocols, TCP/IP, API: A Technical Perspective, Middleware Architecture. Cloud and Fog: M2M Learning and Artificial Intelligence, AR, Industrial Internet Architecture Framework								
		ι	J nit -V				10 Hrs	
 Augmented Reality: The Role of Augmented Reality in the Age of Industry 4.0, Introduction, AR Hardware and Software Technology, Industrial Applications of AR, Maintenance, Assembly, Collaborative Operations, Training. Smart Factories: Introduction, Smart factories in action, Importance, Real world smart factories, The way forward. A Roadmap: Digital Transformation, Transforming Operational Processes, Business Models, Increase Operational Efficiency, Develop New Business Models. 								
Course outcomes: After completing t CO1: Explain the v CO2: Apply the pri CO3: Apply the Inc CO4: Evaluate the	he cour vorking inciples dustrial effective	se, the students wi process and technol of DM in the manuf 4.0 concepts in a ma eness of Cloud Com	Il be able to logy development i facturing industry anufacturing plant aputing in a networ	in Digital Manufact to improve product ked economy.	urir ivit <u>y</u>	g v and profits		

Re	eference Books:
1	Fundamentals of Digital Manufacturing Science, Zude Zhou, Shane (Shengquan) Xie, Dejun Chen,
	2012.Springer ISBN 978-0-85729-564-4,
2	Collabarative design and planning for digital manufacturing, Lihni Wang, Andrew Y.C. Nee, Springer
	Series, 2009, ISBN 998-1-84882-286-3
	Industry 4.0 The Industrial Internet of Things, Alasdair Gilchrist, A press Publisher, ISBN-13 (pbk): 978-
3	1-4842-2046-7.
4	Industry 4.0: Managing The Digital Transformation, Alp Ustundag, Emre Cevikcan, Springer, 2018 ISBN
	978-3-319-57869-9

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

		SI	EMESTER: III			
	INTERNSHIP					
Course Code	:	18MCM32	CIE Marks	:	100	
Credits L:T:P	:	0:0:5	SEE Marks	:	100	
Hours/week	:	10	SEE Duration	:	3 Hrs	
GUIDELINES						

- 1) The duration of the internship shall be for a period of 8 weeks on full time basis after II semester final exams and before the commencement of III semester.
- 2) The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3) Internship must be related to the field of specialization of the respective PG programme in which the student has enrolled.
- 4) Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5) Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. However, interim or periodic reports as required by the industry / organization can be submitted as per the format acceptable to the respective industry /organizations.
- 6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.
- 7) The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry / Organization
 - Acknowledgement
 - Synopsis
 - Table of Contents
 - Chapter 1 Profile of the Organization: Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
 - Chapter 2 Activities of the Department
 - Chapter 3 Tasks Performed: summaries the tasks performed during 8-week period
 - Chapter 4 Reflections: Highlight specific technical and soft skills that you acquired during internship
 - References & Annexure

Course outcomes: After completing the course, the students will be able to

CO1: Apply engineering and management principles

- **CO2:** Analyse real-time problems and suggest alternate solutions
- CO3: Communicate effectively and work in teams
- **CO4:** Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries,	
	ability to comprehend the functioning of the organization/	45%
	departments,	
Review-II	Importance of resource management, environment and sustainability	
	presentation skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation will be done in batches, not exceeding 6 students per batch.

SEMESTER: III						
MAJOR PROJECT : PHASE I						
Course Code	:	18XMCM33		CIE Marks	:	100
Credits L:T:P	:	0:0:5		SEE Marks	:	100
Hours/week	:	10		SEE Duration	:	3 Hours
GUIDELINES						

- 1. The Major Project work comprises of Phase-I and Phase-II. Phase-I is to be carried out in third semester and Phase-II in fourth semester.
- 2. The total duration of the Major project shall be 24 weeks.
- 3. Major project shall be carried out on individual student basis in his/her respective PG programme specialization. Interdisciplinary projects are also considered.
- 4. The allocation of the guides shall be preferably in accordance with the expertise of the faculty.
- 5. The project may be carried out on-campus/industry/organization with prior approval from the Head of the Department.
- 6. The duration of the Phase-I shall be of 12 weeks.
- 7. If a student fails to satisfy the Phase-I, shall be allowed to complete in the fourth semester before commencement of Phase-II of 4th Semester.
- 8. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course outcomes: After completing the course, the students will be able to

CO1: Conceptualize, design and implement solutions for specific problems.

CO2: Communicate the solutions through presentations and technical reports.

CO3: Apply project and resource managements skills, professional ethics, societal concerns

CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of the topic, Literature Survey, Problem Formulation and Objectives	45%
Review-II	Methodology and Report writing	55%

Scheme for Semester End Evaluation (SEE):

Phase-I evaluation shall be done by an external examiner (domain expert) and respective guide as per the schedule. Maximum of three candidates per batch shall be allowed to take examination. The batches are to be formed based on specific domain of work.

	SEMESTER: III						
ADDITIVE MANUFACTURING							
(Elective–E1)							
Cou	irse Code	:	18MCM3E1		CIE Marks	:	100
Cre	dits L: I: P	:	4:0:0		SEE Marks	:	100 2 hm
Hou	Irs	:	52L		SEE Duration	:	3 hrs
				Unit – I			10 Hrs
Dev	velopment of	Ad	lditive Manufa	cturing Technology: Co	omputer-Aided De	sigi	n Technology,
Ass	ociated Tech	nol	ogies, Classifi	cation of AM Processes	s, Metal Systems,	Μ	etal Systems,
Hyb	orid Systems,	, S	steps in Addit	ive Manufacture, Main	tenance of Equip	ome	ent, Materials
Han	ndling Issues						
Des	sign for AM:	Ap	plication Areas	s, Vat Photopolymerization	on Processes, Mate	rial	s, Reaction
Rate	es, Process M	ode	eling, Vector So	can VP Machines, Two-P	hoton Vat Photop	olyı	merization,
Pro	cess Benefits	and	l Drawbacks		-	•	
				Unit – II			10 Hrs
Pow	vder Bed Fu	sin	n Processes I	ntroduction Materials Po	owder Fusion Med	char	nisms Process
Para	meters and Mo	odel	ling Powder Ha	andling Laser UV and IR.	Process Benefits ar	nd E	rawbacks
Ext	rusion-Based	Svs	tems: Introducti	on. Basic Principles. Plottir	ng and Path Control	. Fu	sed Deposition
Mod	deling, Stereo 1	ithe	ography: Materia	lls, Processes parameters, ac	lvantages and limita	tior	ns.
	<u> </u>			Unit – III			10 Hrs
Mat	terial and Bi	nde	er Jetting: Evo	lution, Materials, Material	l Processing Funda	ame	ntals, Material
Jetti	ing Machines, I	Pro	cess Benefits and	d drawbacks, binding mater	ials and systems.		
She	et Lamination	Pr	ocesses: Introdu	ction, Materials, Processes,	Ultrasonic AM, Di	rect	ted Energy
Dep	osition Proce	sse	s, Material Del	ivery, DED Systems, Pro	cess Parameters		
			· · · · · · · · · · · · · · · · · · ·	Unit – IV			10 Hrs
Desi	ign for Addi	itiv	e Manufacturi	ng: Design for Manufac	turing and Assem	bly.	, AM Unique
Cap	abilities, Core	DF	AM Concepts an	nd Objectives, CAD Tools f	or AM.		_
Арр	olications for	A	dditive Manuf	acture: Introduction, The	e Use of AM to	Su	pport Medical
App	olications, Aero	spa	ice and Automot	ive Applications.			
Der	·· 1 T 1	4	lastic Disector	Unit –V	Due la clience f	· T!	12 Hrs
Кар	orta EDM Ela	tro	duction, Direct a	the Indirect AM tooling pro	me PTV Silicono	Inje To	oling Coloium
silic	ate based casta	hle	tooling	Casting and Other Syste		10	oning, Calcium
Dire	ect Digital Ma	nut	facturing: Align	n Technology, Siemens and	Phonak, Custom F	oot	wear and Other
DDI	M Examples,	DE	DM Drivers, Ma	anufacturing Versus Protot	yping, Cost Estima	tion	, Cost Model,
Buil	ld Time Model	, L	aser Scanning V	at Photopolymerization, , L	ife-Cycle Costing, H	Futu	re of DDM
Cou	irse Outcomes	:					
Afte	er going throu	gh	this course the s	student will be able to:			
CO	1: Explain the	W01	king process and	d technology development of	of Additive Manufac	cturi	ng.
	2: Apply the pr	'inc	iples of AM in n	nanufacturing industry			
	5: Analyze the 4 : Evaluating the	COI ha t	achniques involu	red in AM			
Reference Books.							
1 Additive Manufacturing Technologies Ion Cilegen Devid Deser Devet Starley C							
	2ndEdition ISI	uid BN	978_1_4939_211	2-6		Stut	, spillgei,
2	3D Printing a	nd	Additive Manuf	² C facturing, Principles and A	pplications Chee k	Kai	Chua. Kah Fai
- ·	Leong. 4th Ed	ISI	BN 978-9-8145-	7140-1	rprications, chee I		chou, ixui i ul
	Additive Man	ufa	cturing, Amit	Bandyopadhyay, Susmita	Bose, CRC Pres	S	2015 ISBN
3	978148222359	0	6,	J 1 - J - J - J	,		~
4 (Collabarative (des	ign and plannin	ng for digital manufacturi	ng, Lihni Wang, A	ndı	rew Y.C. Nee.
	Springer Series	5. 20	009. ISBN 998-1	-84882-286-3	C: 0,		- 7

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: III									
SURFACE ENGINEERING									
(Elective-E2) Course Code : 18MPD3E2 CIE Marks · 100									
Cred	its L: T: P	•	4:0:0		SEE Marks	•	100		
Hour	s <u> </u>	•	52L		SEE Marks	•	3 hrs		
IIUuI	3	•	19212 Un	nit – I	SEE Duration	•	10 Hrs		
Surfa	ce cleaning –	clas	sification, and sele	ection of cleaning proces	ses-alkaline cleani	ng.	solvent cold		
cleani	ng and vapour	deg	easing, eemulsion	cleaning, pickling and d	escaling	0,			
Tribo	logy - surfac	e deg	radation, wear and	d corrosion, types of wea	r, roles of friction	and	lubrication-		
overv	iew of differer	nt for	ms of corrosion.						
~ •			Un	it – II			12 Hrs		
Surfa	ce Engineeri	ng o	f ferrous and n	onferrous materials: ca	ast iron, carbon a	nd	alloy steels,		
alumi	nium and alloy	/s, cc	opper and alloys, n	agnesium and alloys. Ni	ickel and alooys,				
Conv	ersion coating	gs : (Chemical and elect	rochemical polishing, sig	gnificance, specific	exa	amples,		
phosp	hate, chromati	ng, c	hemical coloring,	anodizing of aluminum a	lloys, thermo chem	ica	l processes -		
indus	trial practices		TT -	4 TTT			10.11		
Core				<u>It – III</u> man mina mialaal and aha		~ ~	10 Hrs		
	ce pre-treatn	ient,	deposition of cop	oper, zinc, nickel and chi	romium - principle	s a	nd practices,		
horon	plating, electi	:0 CO	mposite plating,	electroless plating of co	pper, nickel phosp	ono	rous, nickei-		
Fnvi	, conmontal pro	tooti	on issues Enviro	montal regulation of sur	face engineering o	ndn	nium		
elimi	onnental pro	legre	asing alternatives	competent organic coati	ng	aun	num		
emm	lation vapour (legie	<u>asing anomatives</u> ,		iig.		10 Hrs		
Sputt	er technique	_ N	VII Aethods applicati	ons plasma treatments	nitriding carbon	izir	g boriding		
titania	ing methods	annli	retions	ons, plasma treatments,	, multing, carbon	1211	ig, boriding,		
Laser	coatings	Lase	r alloving source	es variables methods	applications spe	cif	ic industrial		
applic	eations	Luse	a unoying, sour	, variables, methods,	, upplications, spo		ie meusurui		
uppin			Ur	nit –V			10 Hrs		
Ther	nal spraving	• tech	niques, advanced	spraying techniques - p	olasma surfacing, I)- G	un and high		
veloc	ity oxy-fuel pr	ocess	ses,		U,		8		
Laser	• surface alloy	ving a	and Cladding -	specific industrial application	ations, tests for asse	essi	ment of wear		
and co	orrosion behav	iour.	0		,				
Cour	se Outcomes:								
After	going throug	h thi	s course the stude	ent will be able to:					
CO1:	Explain vario	us fo	rms of corrosion a	nd basic concepts of surf	ace engineering				
CO2:	Evaluate the o	liffer	ent surface engine	ering processes with resp	pect to industrial pra	acti	ces		
CO3:	Apply the know	owled	lge of different spi	raying techniques in surfa	ace engineering				
CO4:	Analyse tests	for a	ssessment of wear	and corrosion behavior.					
Kelerence Books									
1.	Surface mod	ificat	ion technologies	- An Engineer's guide,	Sudarshan T S,,	Ma	rcel Dekker,		
	Newyork, ISI	3 N 1	0: 0824780094, 19	989					
2. Electroplating and Other Surface Treatments - A Practical Guide, Varghese C.D, TMH, 0074604643 9780074604649, 1993									
3. Surface Engineering Practice, Processes, Fundamentals and Applications in Corrosion and									
Wear, Strafford, K.N., Datta, P.K., and Gray, J.S., Ellis Harwood, ISBN 13: 9780138780593									
(1990).									
4.	 Advanced Surface Coatings: A Hand book of Surface Engineering, Mathews, A., Spinger, ISBN 095328–7203 (1991). 								

RV College of Engineering®

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: III								
ADVANCED MANUFACTURING PRACTICES								
(Elective–E3)								
Course Code	:	18MCM3E3		CIE Marks	:	100		
Credits L: T: P	:	4:0:0	1	SEE Marks	:	100		
Hours	:	52L	1	SEE Duration	:	3 hrs		
		Uı	nit —I		1	l0 Hrs		
Just in Time Pro	duct	t ion – Primary pu	pose, profit through cost	reduction, elimination	tio	n of over		
production, qualit	y co	ontrol, quality assu	rance, respect for huma	nity, flexible world	k f	orce, JIT		
production adaptir	ng to	changing product	ion quantities, process lag	yout for shortened	lea	ad Times,		
standardization of	oper	ation, automation.						
Sequence and S	ched	uling Used by S	Suppliers: Monthly and	daily Information	. s	sequenced		
withdrawal system	ı by	sequenced schedu	e table, problems and co	unter measures in	app	olying the		
Kanban system to	sub-	contractors.	A			4.0		
			nit -II	1 0 555	~	<u>10 Hrs</u>		
Toyota Producti	on	System-The philo	sophy of TPS, basic fra	ame work of TP	5,	Kanbans.		
Determining the n	umbe	er of Kanbans in T	byota Production System,	Kanban number ur	ide	r constant		
quantity withdraw	al sy	stem, constant cycl	e, non-constant quantity w	vithdrawal system.		τ.		
Kanban Systems	- Su	ipplier Kanban an	d the sequence schedule	for use by suppl	1er	s - Later		
Konhon within To		by Kandan, Sequel	iced withdrawal System a	and Circulation of	une	Supplier		
Kandan wunn 10	yota.	fluctuations and	ung in TPS, production p	mixed model asses	1 SI mh	hooting,		
realize smoothed r	mane	i fluctuations, seq	uencing method for the	mixed model asser	no	ly line to		
	nout		54 TH			12 II.ma		
Just in Time Dro	duct	ion with Total Out	lity Control just in time of	oncont outting lot	170	12 IIIS		
set up times cuttin		ion with Total Qua irchase order costs	the UT cause Effect chair	n bildept, cutting for s	SIZC	es, cutting		
Ouality Improver	nent	s scran/quality im	nrovements motivational	effects responsibil	itv	effects		
small group improved	veme	ent activities with	rawal of buffer inventory	the total quality co	ont	rol		
concept.	, ciii		in a war of our of inventory	, the total quality et	,			
		Uı	nit -IV			10 Hrs		
Total Quality Co	ntro	Introduction Tot	1 Quality Control concent	te responsibility la	ar	ning from		
the west TOC co	nncei	nts categorized g	als habit of improvement	ent perfection bas	ics	ning from		
control easy to see		lity control as facil	itator small lot sizes hou	sekeening	nee	, process		
Scheduling Capa	city	scheduling daily	machine checking tech	niques and Aids	exi	posure of		
problems, fool pro	of de	evices, tools of ana	lysis. OC circles. TOC in	Japanese-owned U	Se	lectronics		
plant, TOC in Japa	inese	-owned automotiv	e plants.					
		U	nit -V			10 Hrs		
Dlant Configurat	ione	Introduction ulti	moto plant configuration	ich chan fabria	otic	n fromo		
riant configurations: introduction-utilinate plant configuration, job snop fabrication, frame welding forming from parts from tubing dedicated production lines, eventeened are ducting the								
daily schedule, forward linkage, physical merger of processes, adjacency								
Material Handling Systems: mixed models, automated production lines, pseudo robots, robots								
CAD and manufacturing, conveyors and stacker cranes. automatic quality monitoring								
Course Outcomes:								
After going through this course the student will be able to:								
CO1: Explain the role of JIT, TPS and TQC strategies in production system								
CO2: Analyze the various concepts of modern manufacturing practices								
CO3: Apply the concepts of JIT and TPS in real time applications								
CO4: Evaluate the various process requirement to decide the plant configuration								

Refe	rence Books:
1	Japanese Manufacturing Techniques, Richard Schonberger, Pearson Higher Education - ISBN:0029291003, 1982
2	An Integrated Approach To Just In Time, Yasuhiro Monden, Toyota Production system, CRC Press, 4th Edition, ISBN: 9781439820971, 2011
3	Simon & Schuster, Adult Lean Thinking, James Womack, ISBN: 0743249275, 2003.
4	The machine that changed the World - The story of Lean production, Harper Perennial edition published James P. Womack, Daniel T Jones, and Daniel Roos,, ISBN-13: 978-0-7432-9979-4, 1991.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. **Total CIE is 20+50+30=100 Marks**.

Scheme of Semester End Examination (SEE) for 100 marks:

MAJOR PROJECT : PHASE II							
E Marks :	100						
E Marks :	100						
E Duration :	3 Hours						
E	Marks:Marks:Duration:						

GUIDELINES

- 1. Major Project Phase-II is continuation of Phase-I.
- 2. The duration of the Phase-II shall be of 12 weeks.
- 3. The student needs to complete the project work in terms of methodology, algorithm development, experimentation, testing and analysis of results.
- 4. It is mandatory for the student to present/publish the work in National/International conferences or Journals
- 5. If any student does not complete the project work and submit the report within the specified schedule, extension of project shall be permitted.
- 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes:

After going through this course the student will be able to:

CO1: Conceptualize, design and implement solutions for specific problems

CO2: Communicate the solutions through presentations and technical reports

CO3: Apply project and resource managements skills, professional ethics, societal concerns

CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Review and refinement of Objectives, Methodology and Implementation	20%
Review-II	Implementation, Testing, Verification and Validation of results,	
	Conclusions and Future Scope of Work	40%
Review-III	Report Writing and Paper Publication	40%

Scheme for Semester End Evaluation (SEE):

Major Project Phase-II SEE shall be conducted in two stages. This is initiated after fulfilment of submission of project report and CIE marks.

Stage-1 Report Evaluation

Evaluation of Project Report shall be done by guide and an external examiner.

Stage-2 Project Viva-voce

Major Project Viva-voce examination is conducted after receipt of evaluation reports from guide and external examiner.

Both Stage-1 and Stage-2 evaluations shall be completed as per the evaluation formats.

SEE procedure is as follows:

	Internal Guide	E	xternal E	xaminer	•	TOTAL		
SEE Report Evaluation	100 marks		100 marks			200 mark		
						(A)	(200/2) = 100 marks	
Viva-Voce	Jointly evaluated External Evaluator	l by r	Internal	Guide	&	(B)	100 marks	
				Tot	al N	Iarks	[(A)+(B)]/2 = 100	

SEMESTER: IV									
TECHNICAL SEMINAR									
Course Code:18MCM42CIE Marks:50									
Credits L:T:P :		0:0:2		SEE Marks	:	50			
Hours/Week	SEE Duration	:	30 min						
GUIDELINES									
1) The present	ation sl	hall be done by indivi	dual students.						
2) The seminar topic shall be in the thrust areas of respective PG programme.									
3) The seminar topic could be complementary to the major project work									
4) The student shall bring out the technological developments with sustainability and societal relevance.									
5) Each student must submit both hard and soft copies of the presentation along with the report.									

Course Outcomes:

After going through this course the student will be able to:

CO1: Identify topics that are relevant to the present context of the world

CO2: Perform survey and review relevant information to the field of study.

CO3: Enhance presentation skills and report writing skills

CO4: Develop alternative solutions which are sustainable

Scheme of Continuous Internal Evaluation (CIE): Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of Topic, Review of literature, Technical Relevance,	45%
	Sustainability and Societal Concerns, Presentation Skills	10 /0
Review-II	Technological Developments, Key Competitors, Report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner and an internal examiner. Evaluation will be done in batches, not exceeding 6 students per batch.