

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysuru Road Bengaluru – 560059

Scheme and Syllabus of III & IV Semester (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in MACHINE DESIGN

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work and Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysore Road Bengaluru – 560059

Scheme and Syllabus of III & IV Semester (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in MACHINE DESIGN

DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

MISSION

- 1. Imparting knowledge in basic and applied areas of Mechanical Engineering.
- 2. Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- 3. Facilitating faculty development through continuous improvement programs.
- 4. Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- 5. Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- 6. Imbibing social and ethical values in students, staff and faculty through personality development programs

PROGRAMME OUTCOMES (PO)

M.Tech in Machine Design graduates will be able to:

PO1: An ability to independently carry out a research / investigation and development work to solve practical problems related to machine design.

PO2: An ability to write and present a substantial technical report / document

PO3: An ability to demonstrate a degree of mastery over the areas of machine design. The mastery should be at a level higher than the requirements in the BE Mechanical Engineering and allied programs

PO4: An ability to use modern tools for the design and analysis of static and dynamic systems and mechanisms

PO5: An ability to adapt technical, safety, ethical and environmental factors in the design of system and mechanism

PO6: An ability to perform in multidisciplinary teams with sound interpersonal and management skills with a commitment to lifelong learning

ABBREVIATIONS

Sl. No.	Abbreviation	Acronym
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	MCA	Master of Computer Applications
24.	MST	Structural Engineering
25.	MHT	Highway Technology
26.	MPD	Product Design & Manufacturing
27.	MCM	Computer Integrated & Manufacturing
28.	MMD	Machine Design
29.	MPE	Power Electronics
30.	MVE	VLSI Design & Embedded Systems
31.	MCS	Communication Systems
32.	MBS	Bio Medical Processing Signal & Instrumentation
33.	МСН	Chemical Engineering
34.	MCE	Computer Science & Engineering
35.	MCN	Computer Network Engineering
36.	MDC	Digital Communication
37.	MRM	Radio Frequency and Microwave Engineering
38.	MSE	Software Engineering
39.	MIT	Information Technology
40.	MBT	Biotechnology
41.	MBI	Bioinformatics

CONTENTS

SEMESTER : III								
Sl. No.	Course Code	Course Title	Page No.					
1.	18MMD31	Fracture Mechanics	1					
2.	18MMD32	Internship	3					
3.	18MMD33	Major Project : Phase I	5					
4.	18XXX 3EX	Elective -E	6-11					
	GROUP E: PROFESSIONAL ELECTIVES							
1.	18MMD3E1	Mechatronics System Design	6					
2.	18MPD3E2	Surface Engineering	8					
3.	18MMD3E3	Experimental Mechanics	10					
SEMESTER : IV								
Sl. No.	Course Code	Course Title	Page No.					
1.	18MMD41	Major Project : Phase-II	12					
2.	18MMD42	Technical Seminar	13					

RV COLLEGE OF ENGINEERING[®], BENGALURU - 560059 (Autonomous Institution Affiliated to VTU, Belagavi)

DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech in MACHINE DESIGN

THIRD SEMESTER CREDIT SCHEME									
Sl. No.	Course Code	Course Title	BoS	Credit Allocation					
	Course Code	Course Thie		L	Т	Р	Credits		
1	18MMD31	Fracture Mechanics	ME	4	1	0	5		
2	18MMD32	Internship	ME	0	0	5	5		
3	18MMD33	Major Project : Phase-I	ME	0	0	5	5		
4	18XXX 3EX	Elective-E	ME	4	0	0	4		
		8	1	10	19				
		Total Number of Hours	8	2	20				

	SEMESTER : III					
	GROUP E: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title				
1	18MMD3E1	Mechatronics System Design				
2	18MPD3E2	Surface Engineering				
3	18MMD3E3	Experimental Mechanics				

FOURTH SEMESTER CREDIT SCHEME									
SI No	Course Code	Course Title	BoS	Credit Allocation					
51. INU.	Course Code	Course The		L	Т	Р	Credits		
1	18MMD41	Major Project : Phase-II	ME	0	0	20	20		
2	18MMD42	Technical Seminar	ME	0	0	2	2		
		Total number of (0	0	22	22			
		Total Number of Hours	0	0	44				

SEMESTER: III							
FRACTURE MECHANICS							
			(Theory)				
Course Code	:	18MMD31		CIE Marks	:	100	
Credits L: T: P	:	4:1:0		SEE Marks	:	100	
Hours	:	52L+26T		SEE Duration	:	3 Hrs	
Unit – I 10 Hrs							

Introduction: The Fracture Mechanics Approach to Design, Early Fracture Research, Historical Perspective The Liberty Ships, Post-War Fracture Mechanics Research, , The Energy Criterion, The Stress-Intensity Approach, Time-Dependent Crack Growth and Damage Tolerance, Effect of Material Properties on Fracture, A Brief Review of Dimensional Analysis.

Linear Elastic Fracture Mechanics, An Atomic View of Fracture, Stress Concentration Effect of Flaws, The Griffith Energy Balance, Comparison with the Critical Stress Criterion, Modified Griffith Equation, The Energy Release Rate, Instability and the R-Curve, Reasons for the R-Curve Shape, Load Control vs. Displacement Control, Structures with Finite Compliance, Stress Analysis of Cracks, The Stress Intensity Factor, Relationship between K and Global Behaviour, Effect of Finite Size , Principle of Superposition, Weight Functions, Relationship between K and G

Unit – II10 HrsCrack-Tip Plasticity: The Irwin Approach, The Strip-Yield Model, Comparison of Plastic Zone
Corrections, Plastic Zone Shape, K -Controlled Fracture, Plane Strain Fracture: Fact vs. Fiction, Crack
tip Triaxiality, Effect of Thickness on Apparent Fracture Toughness, Plastic Zone Effects, Implications
for Cracks in Structures.

Mixed-Mode Fracture: Propagation of an Angled Crack, Equivalent Mode I Crack, Bi-axial Loading. Interaction of Multiple Cracks, Coplanar Cracks, Parallel Cracks. Mathematical Foundations of Linear Elastic Fracture Mechanics, Plane Elasticity, Cartesian Coordinates, Polar Coordinates, Crack Growth Instability Analysis, Crack-Tip Stress Analysis, Generalized In-Plane Loading, The Westergaard Stress Function.

Unit – III10 HrsElastic-Plastic Fracture Mechanics: Crack-Tip-Opening Displacement, The Contour Integral, J as a
Path-Independent Line Integral , J as a Stress Intensity Parameter , The Large Strain Zone , Laboratory
Measurement of J , Relationships Between J and CTOD, Crack-Growth Resistance Curves, Stable and
Unstable Crack Growth, Computing J for a Growing Crack, J-Controlled Fracture.

Dynamic and Time Dependent Fracture: Dynamic Fracture and Crack Arrest, Rapid Loading of a stationary crack, Rapid Crack Propagation and Arrest, Crack Speed, Elastodynamic crack-tip parameters, Dynamic Toughness, Crack Arrest, Dynamic Contour Integrals

Unit – IV12 HrsApplication to Structures: KI for Part-Through cracks, influence coefficients for polynomial stress
distributions, weight functions for arbitrary loading, primary, secondary and residual stresses. CTOD
design curve, Failure Assessment Diagrams (FAD), original concept, J-based FAD, application to
welded structures, incorporating weld residual stresses, weld misalignment, weld strength mismatch.
Primary vs. Secondary stresses in FAD Method, Ductile-tearing Analysis with FAD.12 Hrs

Fatigue Crack Propagation, Similitude in Fatigue, Empirical Fatigue Crack Growth Equations, Crack Closure, A Closer Look at Crack-Wedging Mechanisms, Effects of Loading Variables on Closure, The Fatigue Threshold, The Closure Model for the Threshold, A Two-Criterion Model, Threshold Behaviour in Inert Environments, Variable Amplitude Loading and Retardation, Linear Damage Model for Variable Amplitude Fatigue, Reverse Plasticity at the Crack Tip, The Effect of Overloads and Under loads, Models for Retardation and Variable Amplitude Fatigue.

RV College of Engineering®

	Unit –V	10 Hrs						
Fra	acture Testing of Metals & Non-Metals: General Considerations, specimen conf	igurations,						
Spe	Specimen orientation, Fatigue Precracking, Instrumentation, Side grooving, K _{IC} testing, ASTM E399,							
K-l	R Curve Testing, Specimen design, experimental measurement of K-R curves, J-testing	of metals,						
CT	OD testing, Fracture testing of weldments. Fracture Toughness Measurements in E	ngineering						
Pla	stics, K_{lc} Testing, J-Testing, Qualitative Fracture Tests on Plastics.							
C.		· / M · · 1 · · · 1						
	a Deundern Integral Equation Mathad Traditional Mathada in Computational Exacture	it Method,						
	e Boundary Integral Equation Method, Traditional Methods in Computational Fracture N	mechanics,						
	tess and Displacement Matching, Elemental Crack Advance, Contour Integration, Vir	цаї Стаск						
	tension: Sumess Derivative Formulation, virtual Crack Extension: Continuum Approach.							
	urse Oucomes							
	ter going through this course the student will be able to:							
	11: Demonstrate the material failure for any combination of applied stresses							
	D2: Ability to Assess the failure conditions of a structure							
CU	33: Determine the stress intensity factor for simple components of simple geometry							
CO	4: To conduct fracture testing of metals & non-metals and learn computational fracture	mechanics						
	using FEM							
Re	ference Books:							
1	Fracture_Mechanics: Fundamentals and Applications, T. L. Anderson, Taylor and Fran	cis Fourth						
	Edition, 2005. ISBN: 977-3-735689-37-8							
2	Elementary Engineering Fracture Mechanics, David Broek, Kluwer Academic Publ	ishers, 4 th						
	revised edition. ISBN: 978-1-935159-47-9							
3	Elements of Fracture Mechanics, Prashanth Kumar, Tata McGraw-Hill Education, 2009 ISBN: 077-							
	1-732682-17-2							
4	Fracture Mechanics, E.E. Gdoutos, Kluwer Academic Publishing, Boston, 1993. ISB	N: 947-1-						
	272683-32-9							

Continuous Internal Evaluation (CIE): Total marks: 100

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

			SEMESTER : III			
<u> </u>	1	1010000	INTERNSHIP			100
Course Code	:	18MMD32		CIE Marks	:	100
Credits L:T:P	:	0:0:5		SEE Marks	:	100
Hours/week	:	10		SEE Duration	:	3 Hrs
			GUIDELINES			
1) The duration	n of	f the internship	shall be for a period of 8 weeks on fu	Il time basis after II	sem	ester final
exams and t	oetc	ore the commen	cement of III semester.			
2) The student	mu	ist submit letter	s from the industry clearly specifying	his / her name and the	ne d	uration of
the internsh	ip o	on the company	letter head with authorized signature.			1 . 1 .1
3) Internship n	nus	t be related to t	he field of specialization of the respe	ctive PG programme	1n 1	which the
4) Student nas	enro	oned.	in training one advised to remark the			
4) Students un		going internsh	tive guides	err progress and su	JIIII	periodic
5) Students ha		to present the i	nternship activities carried out to the	departmental comm	ittaa	and only
Upon approv	ve i val	by the commit	ee the student can proceed to prepar	e and submit the har	d co	onv of the
final interns	hin	report Howey	er interim or periodic reports as requ	ired by the industry	$\frac{1}{\sqrt{1}}$	py of the
can be subm	nitte	ed as per the for	mat acceptable to the respective indust	try /organizations.	012	unization
6) The reports	sha	all be printed of	n A4 size with 1.5 spacing and Time	es New Roman with	fon	t size 12.
outer cover	of	the report (wra	pper) has to be Ivory color for PG cir	rcuit Programs and I	igh	t Blue for
Non-Circuit	Pro	ograms.		C	C	
7) The broad f	orm	nat of the intern	ship final report shall be as follows			
• Cov	ver l	Page				
• Cer	tific	cate from Colle	ge			
• Cer	tific	cate from Indus	ry / Organization			
• Ack	nov	wledgement				
• Syn	ops	sis				
• Tab	le c	of Contents				
• Cha	nte	r 1 - Profile of	the Organization : Organizational structure	cture. Products. Serv	ices.	Business
Part	ner	s, Financials, N	Ianpower, Societal Concerns, Professi	onal Practices,		
• Cha	pte	r 2 - Activities	of the Department			
• Cha	pte	r 3 - Tasks Perf	ormed : summaries the tasks performe	d during 8 week peri	od	
• Cha	nte	r 4 – Reflectio	as : Highlight specific technical and s	oft skills that you ac	auir	ed during
inte	rnsl	hip		one shinis that you at	qui	ea aanng
• Ref	erei	nces & Annexu	re			
Course Outcom	es					
After going thro	oug	h the internshi	p the student will be able to:			
CO1: Apply en	gine	eering and man	agement principles			
CO2: Analyze i	eal	-time problems	and suggest alternate solutions			
CO4: Imbibe th	e pi	ractice of profe	ssional ethics and need for lifelong lea	rning.		
	1	I. I. I.	6	C		
Scheme of Cont	inu	ous Internal E	valuation (CIE):			

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments,	45%
Review-II	Importance of resource management, environment and sustainability presentation skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

SEMESTER : III								
MAJOR PROJECT : PHASE-I								
Cours	se Code	:	18MMD33		CIE Marks	:	100	
Credi	ts L:T:P	:	0:0:5		SEE Marks	:	100	
Hours	s/week		10		SEE Duration	:	3 Hrs	
				GUIDELINES				
1.	The Majo	or F	Project work co	omprises of Phase-I and Phase-II. I	Phase-I is to be car	ried	l out in third	
	semester	and	l Phase-II in fou	irth semester.				
2.	The total	dur	ation of the Ma	jor project Phase-I shall be for 16 w	eeks.			
3.	Major pro	ojec	et shall be carri	ed out on individual student basis i	n his/her respective	PC	5 programme	
	specializa	tio	n. Interdiscipli	nary projects are also considered.				
4.	The alloc	atic	on of the guides	shall be preferably in accordance w	ith the expertise of t	he t	faculty.	
5.	The proje	ect	may be carried	out on-campus/industry/organizatio	on with prior approv	val t	from Internal	
	Guide, As	sso	ciate Dean and	Head of the Department.				
6.	Students 1	hav	e to complete M	Aajor Project Phase-I before starting	Major Project Phas	e-II	•	
7.	The report	rts s	shall be printed	on A4 size with 1.5 spacing and T	imes New Roman v	vith	font size 12,	
	outer cov	er c	of the report (w	rapper) has to be Ivory color for PG	circuit Programs ar	ld L	ight Blue for	
	Non-Circ	uit	Programs.					
Cours	se Outcom	es						
After	going thro	ugl	h this course tl	ne students will be able to:				
CO1:	Concept	ual	ize, design and	implement solutions for specific pro-	blems.			
CO2:	Commu	nica	ate the solution	s through presentations and technica	l reports.			
CO3:	Apply p	roje	ect and resource	e managements skills, professional e	thics, societal conce	rns		
CO4:	Synthesi	ize	self-learning, s	ustainable solutions and demonstrat	e life-long learning			

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of the topic, Literature Survey, Problem Formulation and Objectives	45%
Review-II	Methodology and Report writing	55%

Scheme for Semester End Evaluation (SEE):

Major Project Phase-I evaluation shall be done by an external examiner (domain expert) and respective guide as per the schedule. Maximum of four candidates per batch shall be allowed to take examination. The batches are to be formed based on specific domain of work.

SEMESTER : III								
MECHATRONICS SYSTEM DESIGN								
Course Code		10MMD2E1	(Elective-E1)	CIE Marlea	1.	100		
Course Code	:	18MMD3E1		CIE Marks	:	100		
Creatis L:1:P	•	4:0:0		SEE Marks	:	100 2 Hmg		
nours	•	52L	Unit I	SEE Duration	÷			
Introduction De	fini	tion Multidisciplinar	$\frac{1}{1}$ VIIII – I	Mechatronics Desig	m of	f Mechatronics		
system, Objective	s, ad	lvantages and disadvar	ntages of Mechatronics.	vicentationics, Desig	si oi	wieenauomes		
, -	,	0	0					
Transducers and	l se	nsors: Definition and	d classification of transduce	ers, Difference betw	veen	transducer and		
sensor, Definition	and	classification of sens	ors, Principle of working and	applications of light	nt sen	sors, proximity		
switches and Hall	effe	ct sensors.				10		
N	2 14 /	·····	Unit – II	(6 .	10 Hrs		
Microprocessor	ία IVI Diff	aronoo hotwoon Miere	duction, Microprocessor sys	tems, Basic element	s of c	control systems,		
wherecontrollers,	DIII			C 15.				
Microprocessor	Arc	hitecture: Microproc	essor architecture and termi	nology-CPU, memo	rv ar	nd address. I/O		
and Peripheral de	vice	es, ALU, Instruction	and Program, Assembler, D	ata, Registers, Prog	ram (Counter, Flags,		
Fetch cycle, write	cyc	le, state, bus interrupts	s. Intel's 8086A Microproces	sor.				
			Unit – III			10 Hrs		
Programmable l	ogic	controller: Introduc	tion to PLC's, basic structur	e, Principle of oper	ation	, Programming		
and concept of lac	der	diagram, concept of la	atching & selection of a PLC					
Integration. Inter	duo	tion & heatsground	Advanced estuators Drauma	tia actuatora Induct	mial L	Pohot different		
parts of a Robot-C	onti	coller Drive Arm Fn	d Effectors Sensor & Function	onal requirements of	robo	tobol, uniereni		
	onu	ioner, Drive, Ann, En	Unit – IV	onal requirements of	1000	10 Hrs		
Mechanical actua	atio	n systems: Mechanica	al systems, types of motion, (Cams, Gear trains, H	Ratch	et & Pawl, belt		
and chain drives,	necl	hanical aspects of mot	or selection.					
Electrical actuat	ion	systems: Electrical	systems, Mechanical switch	es, Solenoids, Relag	ys, D	OC/AC Motors,		
Principle of Stepp	er N	lotors & servo motors	•			10.11		
Draumatia and	h	durantia actuation a	Unit – V	Ducumentie and	bride	12 Hrs		
Classifications of	nyo Val	ves Pressure relief v	alves Pressure regulating/reg	s, Pheumatic and ducing valves Press	nyur ure s	aune systems,		
Cylinders and rota	rv a	ctuators.	arves, Tressure regularing/red	ducing varves, riese	uic s	sequence varve,		
DCV & FCV- P	rinci	iple & construction d	etails, types of sliding spoo	ol valve, solenoid op	perate	ed, Symbols of		
hydraulic element	s, co	omponents of the hydr	raulic system, functions of va	arious units of hydra	ulic	system. Design		
of simple hydrauli	c ci	rcuits for various appl	ications.					
Course Outcome	5							
After going throu	After going through this course the student will be able to:							
CO1: Define and illustrate the various components of Mechatronics system.								
CO2: Identify, Categorize and apply transducers and sensors used in automation, control system and instruments								
CO4: Develop mechanical, hydraulic, pneumatic and electrical based circuit systems.								
Reference Books:								
1 Mechatronics-Principles, Concepts and Applications, Nitaigour Premchand Mahalik, Tata McGraw Hill,								
¹ 1 st Edition, 2003, ISBN No. 0071239243.								
2. Mechatroni	cs b	y HMT Ltd., Tata Mc	Graw Hill, 1 st Edition, 2000,	ISBN No. 97800746	5364 3	35.		
3. Mechatroni Education	cs – 1 st F	Electronic Control Sy dition, 2005, ISBN N	vstems in Mechanical and Ele p.81-7758-284-4.	ectrical Engineering,	W. 1	Bolton, Pearson		
4. Fluid Powe	r, Ai	nthony Esposito, Pear	son Education-Sixth Edition-	2011, ISBN N0:978	9332:	518544		

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

RV College of Engineering®

SEMESTER : III											
SURFACE ENGINEERING											
Course Code : 18MPD3E2 CIE Marks : 100											
Cred	lits L:T:P	•	4:0:0	SEE Marks : 1							
Hou	rs	:	52L		SEE Duration	:	3 Hrs				
	Unit – I 10 Hrs										
Introduction Tribology, surface degradation, wear and corrosion, types of wear, roles of friction and lubrication- overview of different forms of corrosion, introduction to surface engineering, importance of substrate											
				Unit – II			10 Hrs				
Cher phos indus	nical and el phate, chron strial practice	ect nati s	rochemical polish ing, chemical col	ing, significance, specific example oring, anodizing of aluminum allo	s, chemical conve ys, thermo chemic	ersio cal	on coatings, processes -				
				Unit – III			11 Hrs				
Surface pre-treatment, deposition of copper, zinc, nickel and chromium - principles and practices, alloy plating, electro composite plating, electroless plating of copper, nickel phosphorous, nickel-boron; electroless composite plating; application areas, properties, test standards (ASTM) for assessment of quality deposits.											
Unit – IV 11 Hrs											
Defin nitric speci	nitions and c ling, process fic industrial	con caj ap	cepts, physical va pabilities, chemica plications	apour deposition (PVD), evaporation apour deposition (CVD), metal or	n, sputtering, ion ganic CVD, plasma	plat a as	ing, plasma sisted CVD,				
				Unit – V			10 Hrs				
Ther oxy-: wear	mal spraying fuel processe and corrosio	g, to s, 1 on t	echniques, advand aser surface alloy behavior.	ed spraying techniques - plasma su ng and cladding, specific industrial a	rfacing, D-Gun an pplications, tests fo	d h or as	igh velocity ssessment of				
Cou	rse Outcome	s									
Afte	r going thro	ugł	n this course the s	student will be able to:							
CO1	: Explain var	iou	is forms of corrosi	on and basic concepts of surface engi	neering						
C02	: Evaluate the	e di	illerent surface ei wiedge of differer	igineering processes with respect to it	ndustrial practices						
CO3	: Analyze tes	ts f	For assessment of y	wear and corrosion behavior.	licering						
Refe	rence Books										
1	1Surface modification technologies - An Engineer's guide, Sudarshan T S, Marcel Dekker, Newyork, 1989										
2	Electroplatin	nga	and Other Surface	Treatments - A Practical Guide, Var	ghese C.D, TMH, 1	99	3				
3	Surface Eng Strafford, K	gin .N.	eering Practice, , Datta, P.K., and	Processes, Fundamentals and Appli Gray, J.S., Ellis Harwood (1990).	ications in Corros	ion	and Wear,				
4	Advanced Surface Coatings: A Hand book of Surface Engineering, Mathews, A., Spinger (1991).										

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER : III									
EXPERIMENTAL MECHANICS									
Course Code	:	18MMD3E3	(Elective-E5)	CIE Marks	:	100			
Credits L:T:P	:	4:0:0		SEE Marks	:	100			
Credits	:	52L		SEE Duration	:	3 Hr	s		
		-	Unit–I			_	10 Hrs		
Introduction: D system, Basic o experiment plant	Introduction : Definition of terms, calibration, standards, dimensions and units, generalized measurement system, Basic concepts in dynamic measurements, system response, distortion, impedance matching, experiment planning.								
Analysis of Experimental Data: Cause and types of experimental errors, error analysis. Statistical analysis of experimental data- Probability distribution, Gaussian, normal distribution. Chi-square test, Method of least square, correlation coefficient, multivariable regression, standard deviation of mean, graphical analysis and curve fitting, general consideration in data analysis.									
							12 1115		
Data Acquisition transmission, Ar of data acquisition	on a nalo on s	g-to-Digital and D ystem. Computer p	General data acquisition syst Digital-to- Analog conversion, program as a substitute for wir	Basic components de logic.	(stor	g revis age an	sited, data id display)		
Force, Torque measurement, to sensitivity and Potentiometer, W three element, ru shear gage, Stress	an rquo gag Vhe ecta ss in	d Strain Measure e measurement. St ge factor, Perform at Stone's bridges, ngular and delta n tensity factor gage	arement: Mass balance mean rain Gages -Strain sensitivity of nance characteristics, Enviro Constant current circuits. Str rosettes, Correction for transver.	asurement, Elastic of gage metals, Gag onmental effects S ain Analysis Metho verse strains effects	Ele e co train ds-T , stre	ement onstruct a, gage Two el ess gag	for force tion, Gage e circuits, ement and ge - plane		
Unit–III 10 Hrs									
Photoelastic Str optical interfere Polariscopes.	ess ence	Analysis: Two D - Polariscopes	vimensional Photo elasticity - Stress-optic law- effect of	Nature of light, - w stressed model in	ave pla	theory ne and	of light - d circular		
Isoclinic Iso ch Photoelastic mod Model to prototy	ron del vpe s	natics fringe order materials. Separati scaling.	er determination – Fringe m ion methods shear difference	ultiplication technic method, Analytical	lues sep	- Cali aration	bration of methods,		
			Unit–IV				10 Hrs		
Three Dimensional Photo elasticity: Stress freezing method, General slice, Effective stresses, Stresses separation, Shear deference method, Oblique incidence method Secondary principals stresses, Scattered light photo elasticity, Principles, Polari scope and stress data analyses.									
Coating Methods: Photoelastic Coating Method-Birefringence coating techniques Sensitivity Reinforcing and thickness effects - data reduction - Stress separation techniques Photoelastic strain gauges. Brittle Coatings Method: Brittle coating technique Principles data analysis - coating materials, Coating techniques.									
			Unit–V				10 Hrs		
Moiré Technique plane and out pla	ue - ane	Geometrical appr moiré methods, M	oach, Displacement approach oiré photography, moiré grid p	- sensitivity of moi production.	ré d	ata rec	luction, In		
Holography: In radiator as an interferometry, F	Holography: Introduction, Equation for plane waves and spherical waves, Intensity, Coherence, Spherical radiator as an object (record process), Hurter, Driffeld curves, Reconstruction process, Holographic interferometry Real-time and double exposure methods. Displacement measurement Isopachics								

Course	Ou	tcome	es			
1.04	•	41		 (1	4	

After going through this course the student will be able to:

- CO1: Understand experimental investigations to verify predictions by other methods.
- CO2: Ability to acquire skills for experimental investigations
- CO3: To provide a detailed knowledge of modern full field techniques such as Photoelastic Stress Analysis (PSA), Three Dimensional Photo elasticity (TDP)
- CO4: Explain different types of coatings, test strain data using brittle coating and birefringent coating & holographic techniques

Reference Books:

1	Experimental Methods for Engineers, Holman, 7th Edition, Tata McGraw-Hill Companies, Inc, New
	York, 2007
2	Mechanical measurements, R. S. Sirohi, H. C. Radha Krishna, New Age International Pvt. Ltd., New
	Delhi, 2004
3	Experimental Stress Analysis, Srinath, Lingaiah, Raghavan, Gargesa, Ramachandra, Pant, Tata
	McGraw Hill, 1984.
4	Instrumentation, Measurement And Analysis, Nakra & Chaudhry, B C Nakra K K Chaudhry, Tata
	McGraw-Hill Companies, Inc, New York, Seventh Edition, 2006.

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of Quizzes (Q), Tests (T) and Assignments (A). A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) Solving innovative problems 2) Seminar/new developments in the related course 3) Laboratory/field work 4) Minor project. **Total CIE (Q+T+A) is 20+50+30=100 Marks.**

Scheme of Semester End Examination (SEE) for 100 marks:

SEMESTER: IV								
MAJOR PROJECT : PHASE-II								
Course Code	:	18MMD41	CIE Marks	:	100			
Credits L:T:P	:	0:0:20	SEE Marks	:	100			
Hours/Week : 40 SEE Duration : 3 Hrs								
GUIDELINES								

1. Major Project Phase-II is continuation of Phase-I.

- 2. The duration of the Phase-II shall be of 16 weeks.
- 3. The student needs to complete the project work in terms of methodology, algorithm development, experimentation, testing and analysis of results.
- 4. It is mandatory for the student to present/publish the work in National/International conferences or Journals
- 5. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes

After going through this course the students will be able to:

- CO1: Conceptualize, design and implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply project and resource managements skills, professional ethics, societal concerns
- CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning.

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Review and refinement of Objectives, Methodology and Implementation	20%
Review-II	Design, Implementation and Testing	40%
Review-III	Experimental Result & Analysis, Conclusions and Future Scope of Work, Report Writing and Paper Publication	40%

Scheme for Semester End Evaluation (SEE):

Major Project Phase-II SEE shall be conducted in two stages. This is initiated after fulfilment of submission of project report and CIE marks.

Stage-1 Report Evaluation

Evaluation of Project Report shall be done by guide and an external examiner.

Stage-2 Project Viva-voce

Major Project Viva-voce examination is conducted after receipt of evaluation reports from guide and external examiner.

Both Stage-1 and Stage-2 evaluations shall be completed as per the evaluation formats.

SEE procedure is as follows:

	Internal Guide	External E	xaminer	TOTAL			
SEE Report Evaluation	100 marks	100 ma	arks	200 mar			
				(A)	(200/2) = 100 marks		
Viva-Voce	Jointly evaluated External Evaluator	l by Internal r	Guide &	(B)	100 marks		
			Total N	Iarks	[(A)+(B)]/2 = 100		

SEMESTER : IV								
TECHNICAL SEMINAR								
Course Code	:	18MMD42		CIE Marks	:	50		
Credits L:T:P		0:0:2		SEE Marks	:	50		
Hours/Week		4		SEE Duration	:	30 Mins		
			GUIDELINES					
1) The presenta	tio	n shall be done by indiv	vidual students.					
2) The seminar	top	ic shall be in the thrust	areas of respective	PG programs				
3) The seminar	top	ic could be complement	ntary to the major p	roject work				
4) The student shall bring out the technological developments with sustainability and societal relevance.								
5) Each student	m	ist submit both hard an	d soft copies of the	presentation along wi	th the	e report.		
6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.								
Course Outcomes								
After going through this course the student will be able to:								
CO1: Identify topics that are relevant to the present context of the world								
CO2: Perform survey	y ar	d review relevant info	rmation to the field	of study.				
CO3: Enhance prese	ntat	ion skills and report w	riting skills.					
CO4: Develop alternative solutions which are sustainable.								

Scheme of Continuous Internal Evaluation (CIE): Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of Topic, Review of literature, Technical Relevance,	15%
	Sustainability and Societal Concerns, Presentation Skills	4 <i>3</i> 70
Review-II	Technological Developments, Key Competitors, Report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.