

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) RV Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of III & IV Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in PRODUCT DESIGN AND MANUFACTURING

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work and Innovation

RV COLLEGE OF ENGINEERING[®]

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Scheme and Syllabus of III & IV Semesters (Autonomous System of 2018 Scheme)

Master of Technology (M.Tech) in PRODUCT DESIGN AND MANUFACTURING

DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

Quality education in Design, Materials, Thermal and Manufacturing with emphasis on research, sustainable technologies and entrepreneurship for societal symbiosis.

MISSION

- Imparting knowledge in basic and applied areas of Mechanical Engineering.
- Providing state-of-the-art laboratories and infrastructure for academics and research in the areas of design, materials, thermal engineering and manufacturing.
- Facilitating faculty development through continuous improvement programs.
- Promoting research, education and training in materials, design, manufacturing, Thermal Engineering and other multidisciplinary areas.
- Strengthening collaboration with industries, research organizations and institutes for internship, joint research and consultancy.
- Imbibing social and ethical values in students, staff and faculty through personality development programs

PROGRAM OUTCOMES (PO)

M. Tech. in Product Design and Manufacturing graduates will be able to:

- PO1: Independently carry out a research / investigation and development work to solve practical problems related to product design & manufacturing.
- PO2: Write and present a substantial technical report / document in the field of product design & manufacturing.
- PO3: Demonstrate a degree of mastery over the areas of product design. The mastery would be at a level higher than the requirements in the bachelor's in Mechanical Engineering
- PO4: Use modern tools for the design and analysis of static and dynamic systems and mechanisms.
- PO5: Adopt safety, ethical and environmental factors in product design and processes
- PO6: Perform in multidisciplinary teams with sound interpersonal and management skills with a commitment to lifelong learning

ABBREVIATIONS

Sl. No.	Abbreviation	Acronym
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	CE	Professional Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics
23.	MCA	Master of Computer Applications
24.	MST	Structural Engineering
25.	MHT	Highway Technology
26.	MPD	Product Design & Manufacturing
27.	MCM	Computer Integrated & Manufacturing
28.	MMD	Machine Design
29.	MPE	Power Electronics
30.	MVE	VISI Design & Embedded Systems
31.	MCS	Communication Systems
32.	MBS	Bio Medical Processing Signal & Instrumentation
33.	MCH	Chemical Engineering
34.	MCE	Computer Science & Engineering
35.	MCN	Computer Network Engineering
36.	MDC	Digital Communication
30.	MRM	Radio Frequency and Microwave Engineering
37.	MKM	Software Engineering
39.	MIT	Information Technology
40.	MBT	Biotechnology
41.	MBI	Bioinformatics

CONTENTS

SEMESTER: III						
Sl. No.	Course Code	Course Title	Page No.			
1.	18MPD31	Advanced Materials & Processes	1			
2.	18MPD32	Internship	3			
3.	18MPD33	Major Project : Phase I	5			
4.	18XXX3EX	Elective -E	6-11			
		GROUP E: PROFESSIONAL ELECTIVES				
1.	18MPD3E1	Sheet Metal Forming and Plastic Moulding	6			
2.	18MPD3E2	Surface Engineering	8			
3.	18MCM3E3	Advanced Manufacturing Practices	10			
		SEMESTER: IV				
Sl. No.	Course Code	Course Title	Page No.			
1.	18MPD41	Major Project : Phase II	12			
2.	18MPD42	Technical Seminar	13			

RV COLLEGE OF ENGINEERING[®]BENGALURU - 560059 (Autonomous Institution Affiliated to VTU, Belagavi)

DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech in PRODUCT DESIGN AND MANUFACTURING

	THIRD SEMESTER CREDIT SCHEME								
Sl. No.	Course	Course CodeCourse TitleBoS			Credit Allocation				
51. INO.	Code			L	Т	Р	Credits		
1.	18MPD31	Advanced Materials & Processes	ME	4	1	0	5		
2.	18MPD32	Internship	ME	0	0	5	5		
3.	18MPD33	Major Project : Phase I	Major Project : Phase I ME		0	5	5		
4.	4. 18XXX3EX Elective -E ME				0	0	4		
	Total number of Credits					10	19		
		Total Number of Hours	/ Week	8	2	20			

	SEMESTER : III					
	GROUP E: PROFESSIONAL ELECTIVES					
Sl. No.	Course Code	Course Title				
1.	18MPD3E1	Sheet Metal Forming and Plastic Moulding				
2.	18MPD3E2	Surface Engineering				
3.	18MCM3E3	Advanced Manufacturing Practices				

	FOURTH SEMESTER CREDIT SCHEME								
Sl. No.	Course Code	Course Title	DeC	Credit Allocation					
51. INO.	Course Code		BoS	L	Т	Р	Credits		
1.	18MPD41	Major Project : Phase II	ME	0	0	20	20		
2.	18MPD42 Technical Seminar ME				0	2	2		
	Total number of Credits					22	22		
		Total Number of Hour	rs / Week	0	0	44			

			SEMESTER : III			
		ADVANC	ED MATERIALS & I (Theory)	PROCESSES		
Course Code	:	18MPD31	(Theory)	CIE Marks	:	100
Credits L: T: P	:	4:1:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 hrs
			Unit – I			10 Hrs
Structure-Proper	rtv 1	Relations & N	ewer Materials: Introdu	ction Atomic stra	icture	
secondary bonds,	cry	stal structure,	Crystal structure, crysta s, strain /work hardening	al defects, grain s	structu	ure, elastic and
metals, fracture of			s, strain / work hardening	, plastic deformati		poryerystamm
Newer Materials	: Pla	stics, polymeri	zation thermosetting and	thermoplastic mat	erials	and properties
			perties. Composite ma			
			rule of mixtures, longitu	-		
model), transverse	e stre	ength and modu	ılus (isostress model), ap	plications of comp	osites	
			Unit – II			12 Hrs
8	-		sing of MMCs : matrix			
			ng, arc spray forming,			
÷			inforcement materials, fa	-		
carbon fibers, alu	ımin	a fibers, silico	on carbide fibers. Proces	ssing- slurry infil	tratior	n process, mel
infiltration process	1.					
Processing of PN	ICs:	matrix and rei	or Lanxide process.	· · ·	•	
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme	fCs: , of , aut rgy: ning ent:	matrix and rei PMCs – hand toclave mouldi Introduction, , Powder Con Introduction,	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C npaction, Sintering, Finis Surface Engineering, S	b technique, filame Tharacterization & shing operations,	Testi Appli	inding process 12 Hrs ng of Powders ications of PM egrity concepts
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme	ICs: of , aut rgy: ning ent: nent	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C npaction, Sintering, Finis	b technique, filame Tharacterization & shing operations,	Testi Appli	inding process 12 Hrs ng of Powders ications of PM egrity concepts
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme	ICs: of , aut rgy: ning ent: nent	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C npaction, Sintering, Finis Surface Engineering, S	b technique, filame Tharacterization & shing operations,	Testi Appli	inding process 12 Hrs ng of Powders ications of PM egrity concepts
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme	ICs: of , aut rgy: ning ent: nent	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C npaction, Sintering, Finis Surface Engineering, S	b technique, filame Tharacterization & shing operations,	Testi Appli	inding process 12 Hrs ng of Powders ications of PM egrity concepts
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme and applications, I	fCs: g of g, aut rgy: ning ent: nent lon-i	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra mplantation.	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C paction, Sintering, Finis Surface Engineering, S ying processes and appl	b technique, filame Tharacterization & Shing operations, Surface quality & ications, Vapour o	Testi Appli inte leposi	inding process 12 Hrs ng of Powders ications of PM grity concepts itions processe 08 Hrs
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme and applications, I Environmental I	ICs: g of rgy: ning ent: lon-i Degr	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra mplantation.	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C npaction, Sintering, Finis Surface Engineering, S ying processes and appl Unit – IV	b technique, filame Characterization & Shing operations, Surface quality & ications, Vapour of of environmental	Testi Appli inte leposi degra	inding process 12 Hrs ng of Powders ications of PM grity concepts itions processe 08 Hrs adation, cost o
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatmon Mechanical treatmon and applications, I Environmental I corrosion, electroo	fCs: g of rgy: ning ent: nent (on-i Degr	matrix and rei PMCs – hand toclave mouldi Introduction, , Powder Con Introduction, , Thermal spra mplantation.	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C apaction, Sintering, Finis Surface Engineering, S ying processes and appl Unit – IV aterials: Different forms	b technique, filame Characterization & Shing operations, Surface quality & ications, Vapour of of environmental nic, Intergranular,	Testi Appli inte leposi degra	inding process 12 Hrs ng of Powders ications of PM grity concepts itions processe 08 Hrs adation, cost o
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme and applications, I Environmental I corrosion, electroo corrosion. Corrosi	ICs: g of rgy: ning ent: lon-i Degr chen on c	matrix and rei PMCs – hand toclave mouldi Introduction, , Powder Con Introduction, , Thermal spra mplantation.	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C upaction, Sintering, Finis Surface Engineering, S ying processes and appl Unit – IV aterials: Different forms rms of corrosion- Galava	b technique, filame Characterization & Shing operations, Surface quality & ications, Vapour of of environmental nic, Intergranular, pating.	Testi Appli inte leposi degra	inding process 12 Hrs ng of Powders ications of PM grity concepts itions processe 08 Hrs adation, cost o g, stress related
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme and applications, I Environmental I corrosion, electroo corrosion. Corrosi Smart materials	ICs: g of rgy: ning ent: lon-i lon-i Degr chen on c : S	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra mplantation.	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C apaction, Sintering, Finis Surface Engineering, S ying processes and appl Unit – IV aterials: Different forms rms of corrosion- Galava als selection, protective co	b technique, filame Characterization & Shing operations, Surface quality & ications, Vapour of of environmental nic, Intergranular, pating.	Testi Appli inte leposi degra	inding process 12 Hrs ng of Powders ications of PM grity concepts itions processe 08 Hrs adation, cost o g, stress related
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme and applications, I Environmental I corrosion, electroo corrosion. Corrosi Smart materials	ICs: g of rgy: ning ent: lon-i lon-i Degr chen on c : S	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra mplantation.	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C apaction, Sintering, Finis Surface Engineering, S ying processes and appl Unit – IV aterials: Different forms rms of corrosion- Galava als selection, protective co and their properties, P	b technique, filame Characterization & Shing operations, Surface quality & ications, Vapour of of environmental nic, Intergranular, pating.	Testi Appli inte leposi degra	inding process 12 Hrs ng of Powders ications of PM grity concepts itions processe 08 Hrs adation, cost o g, stress related
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme and applications, I Environmental I corrosion, electroo corrosion. Corrosi Smart materials memory materials	ICs: g of rgy: ning ent: nent lon-i Degr chen on c : S	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra mplantation.	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C apaction, Sintering, Finis Surface Engineering, S ying processes and appl Unit – IV aterials: Different forms rms of corrosion- Galava als selection, protective co and their properties, P cal fluids, optical fibres.	b technique, filame Characterization & Shing operations, Surface quality & ications, Vapour of of environmental nic, Intergranular, pating. Fiezoelectric, magi	Testi Appli inte leposi degra pittin neto s	inding process 12 Hrs ng of Powders ications of PM grity concepts itions processe 08 Hrs adation, cost o g, stress related structure, shap 10 Hrs
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme and applications, I Environmental I corrosion, electroo corrosion. Corrosi Smart materials memory materials	ICs: g of rgy: ning ent: nent: lon-i Degr chen on c : S , Ele	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra mplantation.	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C apaction, Sintering, Finis Surface Engineering, S ying processes and appl Unit – IV aterials: Different forms rms of corrosion- Galava als selection, protective co and their properties, P cal fluids, optical fibres. Unit – V	b technique, filame Characterization & Shing operations, Surface quality & ications, Vapour of of environmental nic, Intergranular, pating. Fiezoelectric, magi	Testi Appli inte leposi degra pittin neto s	inding process 12 Hrs ng of Powders ications of PM grity concepts itions processe 08 Hrs adation, cost o g, stress related structure, shap 10 Hrs
Processing of PM fibers. Processing pultrusion process Powder Metallun Powder Condition components. Surface Treatme Mechanical treatme and applications, I Environmental I corrosion, electroo corrosion. Corrosi Smart materials memory materials Thin film: Sol-ge pulsed laser depose	ICs: g of rgy: ning ent: nent: lon-i Degr chen on c : S , Ele 1, sp sition	matrix and rei PMCs – hand toclave mouldi Introduction, 1 , Powder Con Introduction, , Thermal spra mplantation. adation of Materia mart materials ectro Rheologic in coating, spun	nforcement materials, pr layup process, spray-up ng. Unit – III Production of Powder, C apaction, Sintering, Finis Surface Engineering, S ying processes and appl Unit – IV aterials: Different forms rms of corrosion- Galava als selection, protective co and their properties, P cal fluids, optical fibres. Unit – V	b technique, filame Characterization & Shing operations, Surface quality & ications, Vapour of of environmental nic, Intergranular, pating. Piezoelectric, maging plementation, cath	Testi Appli inte leposi degra pittin neto s	inding process 12 Hrs ng of Powders ications of PM grity concepts itions processe 08 Hrs adation, cost o g, stress related structure, shap 10 Hrs e arc deposition

Course Outcomes:

After going through this course the student will be able to:

- CO1 Explain the concepts and principles of advanced materials and manufacturing processes
- CO2 Analyze the materials and processes for particular application
- CO3 Understand the concept of powder metallurgy technique
- CO4 Evaluate the principles and application of surface treatment methods

Refe	erence Books:
1	Materials and Processing in Manufacturing, E. Paul Degarmo, J.T. Black, and Ronald A
	Kohser, John Wiley and Sons Inc., 12th Edition, 5th July 2017, ISBN: 978-
	1118987674.
2	Composite Materials: Science & Engineering, K.K.Chawla, Springer-Verlag, New York, 3rd
	Edition, 2012, ISBN: 978-0387743646.
3	Structure and Properties of Engineering Materials, V. S. R Murthy, A. K. Jena, K. P. Gupta and
	G.S.Murthy, Tata McGraw Hill Education, 2003, ISBN: 9780070482876.
4	Nanotechnology, Rakesh Rathi, S.Chand and Company, 1st December 2010, ISBN: 978-
	8121930826.

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

		SI	EMESTER : III			
]	NTERNSHIP			
Course Code	:	18MPD32		CIE Marks	:	100
Credits L:T:P	:	0:0:5		SEE Marks	:	100
Hours/week	:	10		SEE Duration	:	3 Hrs
			GUIDELINES			

1) The duration of the internship shall be for a period of 8 weeks on full time basis after II semester final exams and before the commencement of III semester.

- 3) Internship must be related to the field of specialization of the respective PG programme in which the student has enrolled.
- 4) Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5) Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. However, interim or periodic reports as required by the industry / organization can be submitted as per the format acceptable to the respective industry /organizations.
- 6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.
- 7) The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry / Organization
 - Acknowledgement
 - Synopsis
 - Table of Contents
 - Chapter 1 Profile of the Organization : Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
 - Chapter 2 Activities of the Department
 - Chapter 3 Tasks Performed : summaries the tasks performed during 8 week period
 - Chapter 4 Reflections : Highlight specific technical and soft skills that you acquired during internship
 - References & Annexure

Course Outcomes:

After going through the internship the student will be able to:

- CO1: Apply engineering and management principles
- CO2: Analyze real-time problems and suggest alternate solutions
- CO3: Communicate effectively and work in teams
- CO4: Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

²⁾ The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries, ability to comprehend the functioning of the organization/ departments,	45%
Review-II	Importance of resource management, environment and sustainability presentation skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation will be done in batches, not exceeding 6 students per batch.

SEMESTER : III							
MAJOR PROJECT : PHASE I							
Course Code	:	18XXX33	CIE Marks	:	100		
Credits L:T:P	:	0:0:5	SEE Marks	:	100		
Hours/week	:	10	SEE Duration	:	3 Hours		
		(GUIDELINES				

- 1. The Major Project work comprises of Phase-I and Phase-II. Phase-I is to be carried out in third semester and Phase-II in fourth semester.
- 2. The total duration of the Major project shall be 24 weeks.
- 3. Major project shall be carried out on individual student basis in his/her respective PG programme specialization. Interdisciplinary projects are also considered.
- 4. The allocation of the guides shall be preferably in accordance with the expertise of the faculty.
- 5. The project may be carried out on-campus/industry/organization with prior approval from the Head of the Department.
- 6. The duration of the Phase-I shall be of 12 weeks.
- 7. If a student fails to satisfy the Phase-I, shall be allowed to complete in the fourth semester before commencement of Phase-II of 4th Semester.
- 8. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes:

After going through this course the students will be able to:

- CO1: Conceptualize, design and implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply project and resource managements skills, professional ethics, societal concerns
- CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of the topic, Literature Survey, Problem Formulation and Objectives	45%
Review-II	Methodology and Report writing	55%

Scheme for Semester End Evaluation (SEE):

Phase-I evaluation shall be done by an external examiner (domain expert) and respective guide as per the schedule. Maximum of three candidates per batch shall be allowed to take examination. The batches are to be formed based on specific domain of work.

			SEMESTER : III			
S	HE	ET METAL FO	DRMING AND PLAS	TIC MOULDIN	G	
			(Elective-E1)			
Course Code	:	18 MPD3E1		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 hrs
			Unit – I			10 Hrs
Sheet Metal Ope	rati	ons: Classificatio	n of presses, sheet meta	d operations, shear	ing	theory, cutting
force, clearance be	etwe	en punch and die,	shut height and daylight	t, press tonnage cal	cula	tion.
Strip Layout: Ba	sic r	ules, economic la	yout, bridge size, calcula	tion of plug point/c	ente	er of pressure
			Unit – II			10 Hrs
Bonding Dia. Th	2017	of banding dave	lopment of bend, spring	hack correcting or	rinc	thack handing
			ng on press brake, b			
		•	ling and U-bending.	enuning loice, un		it methous of
				a of anyther of	-	a of duarding
		•	development, calculatio	on of number of s	stage	es of drawing,
circular draw, drav	W 101	rce calculation, lu	brication.			
			Unit – III			10 11
						10 Hrs
			gn of die plates, punches			
			lster plates, pilots, ejec	ctors, shedders, pi	llar,	bush, slender
punches, stock gu						
Types of Press To	ools:	Stage tools, prog	ressive tools, compound	tools, and combina	atior	
			Unit – IV			12 Hrs
			s injection mould element			
			l bushes. Feed systems:]			rs, impressions,
layout, sprue, spru	ie pu	llers. Parting Sur	faces: Straight, stepped, o	curved parting surfa	ace.	
Ejector System:	Тур	es of ejection, e	jector pin, sleeve ejectio	on, plate ejection,	blac	de ejection, air
ejection, ejection	froi	n fixed half, do	uble ejection, delayed	ejection. Cooling	Sys	tem: Need for
cooling, cooling s	olid	cores and cavitie	s, insert cooling, cooling	long cores, coolin	g el	ements, baffles
etc., and cooling c	alcu	lation.		-	-	
C						
			Unit –V			10 Hrs
Design of Mould	s wi	th External und	er Cuts: Split moulds, A	Actuation of splits	, Gu	
			d components. Special			
moulds.						
	rnal	under cuts: For	m pins, split cores, side	cores, and stripping	g int	ernal undercut
			nt. Thermoset plastic mo		-	
			lding and its remedies.	erang. compressi	511 1	in an and tools,
		in mou				

Course Outcomes:

After going through this course the student will be able to:

- CO1: Explain the necessity of press tool and mould for manufacturing of different tools
- CO2: Analyse the design constraints in the given problem
- CO3: Apply the design rule for manufacturing of press tools and moulds

CO4: Design of press tools and mould for considering real time issues of Manufacturing, Testing and Assembly

Reference Books:

- 1 Die Design Fundamentals, Paquin J.R. & Crowley, Industrial Press Inc. 3rdEd. 2006. ISBN 13: 9780831131197
- Handbook of Die Design, Ivana Suchy, New York-Mc GRAW-HILL: 2nd Edition, 2005, ISBN: 9780071462716, 0071462716
- 3 Injection Mould Design, R. G. W Pye, Affiliated East-West Press Pvt. Ltd.-New Delhi, 4th Ed, 2000, ISBN: 9788176710107, 8176710105
- 4 Injection Molding Handbook, D.V. Rosato, Marlene G. Rosato, Springer, 3rd Edition, 2000, ISBN: 0792386191, 9780792386193

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit

			SEMESTER : III			
		SURF	FACE ENGINEERIN	E E		
			(Elective-E2)			
Course Code	:	18 MPD 3E2		CIE Marks	:	100
Credits L: T: P	:	4:0:0		SEE Marks	:	100
Hours	:	52L		SEE Duration	:	3 hrs
		l	U nit – I			10 Hrs
Surface cleaning	s - cl	assification, and se	election of cleaning proce	sses-alkaline clea	ning	, solvent cold
cleaning and vapo	our d	egreasing, eemulsi	on cleaning, pickling and	descaling		
			nd corrosion, types of we	ear, roles of friction	on an	d
lubrication- overv	view	of different forms				1
			Init – II			12 Hrs
0	-	,	l non ferrous materia			
			alloys, magnesium and			
	0		ectrochemical polishing,	•		·
· ·	-		g, anodizing of aluminun	n alloys, thermo c	chem	ical
processes -indust	rial p		nit – III			10 Hrs
Cumfa an una Amag	4		opper, zinc, nickel and cl			
-		·		· ·		·
boron;	ctro	composite plating	, electroless plating of c	opper, meker pho	ospiio	brous, meker
· ·	vrote	ction issues Envir	onmental regulation of su	urface engineering	т са	dmium
-			es, compient organic coat	υ.	g, ca	umum
emmation vapor			nit – IV	ing.		10 Hrs
Sputter techniq	ne –		ations, plasma treatments	s nitriding carb	onizi	
titanising method				,	011121	
÷			, variables, methods, appl	ications, specific	indu	strial
applications		<i>J U</i> ,		× 1		
		τ	J nit –V			10 Hrs
Thermal sprayin	ng- te	echniques, advance	ed spraying techniques -	plasma surfacing	, D-0	Gun and hig
velocity oxy-fuel	proc	esses,				
Laser surface all	loyin	g and Cladding -	specific industrial applic	ations, tests for a	ssess	ment of wea
and corrosion beh	navio	ur.				
Course Outcome						
0 0	0		ident will be able to:			
-			and basic concepts of surface			
CO2: Evaluate t	he di	fferent surface engin	neering processes with respe	ect to industrial pra	actice	S
CO3: Apply the	knov	vledge of different sp	praying techniques in surfac	e engineering		
CO4. Analyze te	ests fo	or assessment of we	ar and corrosion behaviour			

CO4: Analyze tests for assessment of wear and corrosion behaviour.

Reference Books

ILC	lefence books						
1.	Surface modification technologies - An Engineer's guide, Sudarshan T S, Marcel						
	Dekker, Newyork, 1989						
2.	Electroplating and Other Surface Treatments - A Practical Guide, Varghese C.D, TMH, 1993						
3.	Surface Engineering Practice, Strafford, K.N., Datta, P.K., and Gray, J.S., Processes, Fundamentals and Applications in Corrosion and Wear, Ellis Harwood (1990).						
4.	Advanced Surface Coatings: A Hand book of Surface Engineering, Mathews, A., Spinger (1991).						

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

		S	EMESTER : III					
ADVANCED MANUFACTURING PRACTICES								
Course Code	:	18 MCM 3E3	(Elective-E3)	IE Marks	:	100		
Credits L: T: P	:	4:0:0		EE Marks	:	100		
Hours	:	52L		EE Duration	•	3 hrs		
liouis	•		nit –I	EL Duration	•	10 Hrs		
Just in Time Pro	duct	ion – Primary pu	pose, profit through cost r	eduction, elimina	tio			
			rance, respect for human					
			ion quantities, process layo					
standardization of								
			uppliers: Monthly and d					
•	•	A	e table, problems and cour	nter measures in	app	lying the		
Kanban system to	sub c				—	4.4.3-		
T			nit -II	1 (1775)		12 Hrs		
-			sophy of TPS, basic framework production Supreme					
Ū.			yota Production System, K		aer	constant		
	•	•	e, non-constant quantity wi	•	ior	Lotor		
			iced Withdrawal System ar					
			ning in TPS, production pla					
			uencing method for the m					
realize smoothed p								
Unit -III 10 Hrs								
Just-in-Time Production with Total Quality Control just in time concept, cutting lot sizes,								
			er costs, the JIT cause-Effect		-			
			provements, motivational e	-	-			
	veme	ent activities, with	Irawal of buffer inventory,	the total quality co	ont			
concept.					onu	rol		
			•4 ***					
T 10 T			hit -IV			rol 10 Hrs		
Total Quality Co	ntrol	U	it -IV 1 Quality Control concepts	responsibility, le		10 Hrs		
the west, TQC co	oncep	Un I-Introduction-Tota ots categorized, go	l Quality Control concepts pals, habit of improvemen	t, perfection, bas	earr	10 Hrs		
the west, TQC co control, easy to see	oncep e qua	Un I-Introduction-Tota ots categorized, ge lity control as faci	l Quality Control concepts bals, habit of improvemen itator, small lot sizes, house	t, perfection, bas ekeeping,	earr	10 Hrs ning from , process		
the west, TQC co control, easy to see Scheduling : Capa	oncep e qua acity	Un I-Introduction-Tota ots categorized, go lity control as faci scheduling, daily	l Quality Control concepts, bals, habit of improvemen itator, small lot sizes, house machine checking, techni	t, perfection, bas ekeeping, ques and Aids,	earr sics	10 Hrs ning from , process		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p	oncep e qua acity proof	Un I-Introduction-Tota ots categorized, go lity control as faci scheduling, daily devices, tools of	l Quality Control concepts pals, habit of improvemen itator, small lot sizes, house machine checking, techni analysis, QC circles, T	t, perfection, bas ekeeping, ques and Aids,	earr sics	10 Hrs ning from , process		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p	oncep e qua acity proof	Un I-Introduction-Tota ots categorized, ge lity control as faci scheduling, daily devices, tools of in Japanese-owned	l Quality Control concepts bals, habit of improvemen itator, small lot sizes, house machine checking, technic analysis, QC circles, T automotive plants.	t, perfection, bas ekeeping, ques and Aids,	earr sics	10 Hrs ing from , process posure of vned US		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p electronics plant, T	oncep e qua acity proof TQC	Un I-Introduction-Tota ots categorized, ge lity control as faci scheduling, daily devices, tools of in Japanese-owned U	l Quality Control concepts pals, habit of improvemen itator, small lot sizes, house machine checking, techni analysis, QC circles, T automotive plants. nit -V	t, perfection, bas ekeeping, ques and Aids, QC in Japanese	earr sics exp -ov	10 Hrs ing from , process posure of vned US 10 Hrs		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p electronics plant, T Plant Configurat	oncep e qua acity oroof TQC tions	Un I-Introduction-Tota ots categorized, ge lity control as faci scheduling, daily devices, tools of in Japanese-owned U : Introduction-ulti	l Quality Control concepts, bals, habit of improvemen itator, small lot sizes, house machine checking, technic analysis, QC circles, T automotive plants. nit -V mate plant configuration,	t, perfection, bas ekeeping, ques and Aids, QC in Japanese job shop fabrica	earr sics exp e-ov	10 Hrs ing from , process oosure of vned US 10 Hrs n, frame		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p electronics plant, T Plant Configurat welding, forming	oncep e qua acity oroof <u>FQC</u> tions:	Un I-Introduction-Tota ots categorized, ge lity control as faci scheduling, daily devices, tools of in Japanese-owned U : Introduction-ulti e parts from tubing	l Quality Control concepts bals, habit of improvemen itator, small lot sizes, house machine checking, technic analysis, QC circles, T automotive plants. nit -V mate plant configuration, g, dedicated production line	t, perfection, bas ekeeping, ques and Aids, QC in Japanese job shop fabrica	earr sics exp e-ov	10 Hrs ing from , process oosure of vned US 10 Hrs n, frame		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p electronics plant, T Plant Configurat welding, forming daily schedule, for	oncep e qua acity proof <u>TQC</u> tions: frame	Un I-Introduction-Tota ots categorized, go lity control as faci scheduling, daily devices, tools of in Japanese-owned U : Introduction-ulti e parts from tubing I linkage, physical	l Quality Control concepts bals, habit of improvemen itator, small lot sizes, house machine checking, technic analysis, QC circles, T automotive plants. nit -V mate plant configuration, g, dedicated production line merger of processes, adjace	t, perfection, bas ekeeping, ques and Aids, QC in Japanese job shop fabrica ss, overlapped pro- ncy,	earr sics exp e-ov	10 Hrs ing from , process bosure of vned US 10 Hrs n, frame ction, the		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p electronics plant, T Plant Configurat welding, forming daily schedule, for Material Handlin	oncer e qua acity oroof <u>TQC</u> tions: frame rward ng Sy	Un I-Introduction-Tota ots categorized, ge lity control as faci scheduling, daily devices, tools of in Japanese-owned U : Introduction-ulti e parts from tubing l linkage, physical vstems: mixed mo	l Quality Control concepts, bals, habit of improvemen itator, small lot sizes, house machine checking, technic analysis, QC circles, T automotive plants. nit -V mate plant configuration, g, dedicated production line merger of processes, adjace dels, automated productior	t, perfection, bas ekeeping, ques and Aids, QC in Japanese job shop fabrica es, overlapped pro- ncy, i lines, pseudo ro	earr sics exp e-ov	10 Hrs ing from , process oosure of vned US 10 Hrs n, frame ction, the		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p electronics plant, T Plant Configurat welding, forming daily schedule, for Material Handlin	oncer e qua acity oroof <u>TQC</u> tions: frame rward ng Sy	Un I-Introduction-Tota ots categorized, ge lity control as faci scheduling, daily devices, tools of in Japanese-owned U : Introduction-ulti e parts from tubing l linkage, physical vstems: mixed mo	l Quality Control concepts bals, habit of improvemen itator, small lot sizes, house machine checking, technic analysis, QC circles, T automotive plants. nit -V mate plant configuration, g, dedicated production line merger of processes, adjace	t, perfection, bas ekeeping, ques and Aids, QC in Japanese job shop fabrica es, overlapped pro- ncy, i lines, pseudo ro	earr sics exp e-ov	10 Hrs ing from , process oosure of vned US 10 Hrs on, frame ction, the		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p electronics plant, T Plant Configurat welding, forming daily schedule, for Material Handlin	oncer e qua acity oroof <u>TQC</u> tions: frame rward ng Sy	Un I-Introduction-Tota ots categorized, ge lity control as faci scheduling, daily devices, tools of in Japanese-owned U : Introduction-ulti e parts from tubing l linkage, physical vstems: mixed mo	l Quality Control concepts, bals, habit of improvemen itator, small lot sizes, house machine checking, technic analysis, QC circles, T automotive plants. nit -V mate plant configuration, g, dedicated production line merger of processes, adjace dels, automated productior	t, perfection, bas ekeeping, ques and Aids, QC in Japanese job shop fabrica es, overlapped pro- ncy, i lines, pseudo ro	earr sics exp e-ov	10 Hrs ing from , process oosure of vned US 10 Hrs n, frame ction, the		
the west, TQC co control, easy to see Scheduling : Capa problems, fool p electronics plant, T Plant Configurat welding, forming daily schedule, for Material Handlin	oncer e qua acity oroof <u>TQC</u> tions: frame rward ng Sy	Un I-Introduction-Tota ots categorized, ge lity control as faci scheduling, daily devices, tools of in Japanese-owned U : Introduction-ulti e parts from tubing l linkage, physical vstems: mixed mo	l Quality Control concepts, bals, habit of improvemen itator, small lot sizes, house machine checking, technic analysis, QC circles, T automotive plants. nit -V mate plant configuration, g, dedicated production line merger of processes, adjace dels, automated productior	t, perfection, bas ekeeping, ques and Aids, QC in Japanese job shop fabrica es, overlapped pro- ncy, i lines, pseudo ro	earr sics exp e-ov	10 Hrs ing from , process oosure of vned US 10 Hrs n, frame ction, the		

Course Outcomes:							
After going through this course the student will be able to:							
CO1:	Explain the role of JIT, TPS and TQC strategies in production system						
CO2:	Analyze the various concepts of modern manufacturing practices						
CO3:	Apply the concepts of JIT and TPS in real time applications						
CO4:	Evaluate the various process requirement to decide the plant configuration						

Refe	Reference Books:								
1	Japanese Manufacturing Techniques, Richard Schonberger, Pearson Higher Education - ISBN:0029291003 1982								
2	An Integrated Approach To Just In Time, Yasuhiro Monden, Toyota Production system								
3	Adult Lean Thinking, James Womack, Simon & Schuster, ISBN: 0743249275, 2003.								
4	The machine that changed the World - The story of Lean production, James P. Womack, Daniel								
	T Jones, and Daniel Roos, Harper Perennial edition published -1991.								

Scheme of Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of two quizzes are conducted and each quiz is evaluated for 10 marks adding up to 20 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50 marks. A minimum of two assignments are given with a combination of two components among 1) solving innovative problems 2) seminar/new developments in the related course 3) Laboratory/field work 4) mini project. Total CIE is 20+50+30=100 Marks.

Scheme of Semester End Examination (SEE) for 100 marks:

The question paper will have FIVE questions with internal choice from each unit. Each question will carry 20 marks. Student will have to answer one full question from each unit.

SEMESTER : IV							
MAJOR PROJECT : PHASE II							
Course Code	:	18MPD41		CIE Marks	:	100	
Credits L:T:P	:	0:0:20		SEE Marks	:	100	
Hours/Week:40SEE Duration:3 Hours							
GUIDELINES							

1. Major Project Phase-II is continuation of Phase-I.

- 2. The duration of the Phase-II shall be of 12 weeks.
- 3. The student needs to complete the project work in terms of methodology, algorithm development, experimentation, testing and analysis of results.
- 4. It is mandatory for the student to present/publish the work in National/International conferences or Journals
- 5. If any student does not complete the project work and submit the report within the specified schedule, extension of project shall be permitted.
- 6. The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for PG circuit Programs and Light Blue for Non-Circuit Programs.

Course Outcomes:

After going through this course the students will be able to

- CO1: Conceptualize, design and implement solutions for specific problems.
- CO2: Communicate the solutions through presentations and technical reports.
- CO3: Apply project and resource managements skills, professional ethics, societal concerns
- CO4: Synthesize self-learning, sustainable solutions and demonstrate life-long learning

Scheme of Continuous Internal Examination (CIE)

Evaluation shall be carried out in three reviews. The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Review and refinement of Objectives, Methodology and Implementation	20%
Review-II	Implementation, Testing, Verification and Validation of results,	
	Conclusions and Future Scope of Work	40%
Review-III	Report Writing and Paper Publication	40%

Scheme for Semester End Evaluation (SEE):

Major Project Phase-II SEE shall be conducted in two stages. This is initiated after fulfilment of submission of project report and CIE marks.

Stage-1 Report Evaluation

Evaluation of Project Report shall be done by guide and an external examiner.

Stage-2 Project Viva-voce

Major Project Viva-voce examination is conducted after receipt of evaluation reports from guide and external examiner.

Both Stage-1 and Stage-2 evaluations shall be completed as per the evaluation formats.

	Internal Guide	E	xternal E	xaminei	ſ	TOTAL		
SEE Report Evaluation	100 marks		100 m	arks		200 ma		
						(A)	(200/2) = 100 marks	
Viva-Voce	Jointly evaluated External Evaluator	•	Internal	Guide	&	(B)	100 marks	
Total Marl						larks	[(A)+(B)]/2 = 100	

SEE procedure is as follows:

		SEME	STER : IV			
		TECHNIC	AL SEMINAR			
Course Code:18MPD42CIE Marks:						
Credits L:T:P		0:0:2	SEE N	Iarks	:	50
Hours/Week	:	4	SEE Du	iration	:	30 min
		GUII	ELINES			
1) The presenta	tior	n shall be done by individua	students.			
· •		ic shall be in the thrust area		nme.		
,	-	ic could be complementary				
/	-	all bring out the technol	0 1 0		bility	and societal
relevance.						
5) Each student	mι	ist submit both hard and sof	copies of the presentation	n along wit	th the	e report.
Course Outcomes:						
After going through t	this	course the student will be a	ble to:			
CO1: Identify topics	tha	t are relevant to the present	context of the world			
• •		d review relevant information				
•		ion skills and report writing	•			
		e solutions which are sustai				

Scheme of Continuous Internal Evaluation (CIE): Evaluation shall be carried out in two reviews. The evaluation committee shall consist of Guide, Professor and Associate Professor/Assistant Professor.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Selection of Topic, Review of literature, Technical Relevance, Sustainability and Societal Concerns, Presentation Skills	45%
Review-II	Technological Developments, Key Competitors, Report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner and an internal examiner. Evaluation will be done in batches, not exceeding 6 students per batch.