Rashtreeya Sikshana Samithi Trust R.V.COLLEGE OF ENGINEERING (Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E) Scheme and Syllabus (2016 Scheme)

I & II Semester (Common to all Programs)

Abbreviations

Sl. No.	Abbreviation	Meaning
1	CIE	Continuous Internal Evaluation
2	CS	Computer Science and Engineering
3	CV	Civil Engineering
4	ECE	Electronics and Communication Engineering
5	EE	Electrical and Electronics Engineering
6	HSS	Humanities and Social Sciences
7	ME	Mechanical Engineering
8	SEE	Semester End Examination
9	SS (EL)	Self Study (Experiential Learning)

Vision

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

Mission

- To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- To create a conducive environment for interdisciplinary research and innovation.
- To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

Quality Policy

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

Sl. No.	Catagory	$\mathbf{D}_{\text{amount}_{2}}$	Minimum No. of	2016 scheme			
51. INO.	No. Category Percentage (%) credits		Without Mini Project	With Mini Project			
1	Humanities	5-10	10	9+2	9+2		
2	Basic Science	15-20	30	30	30		
3	Engineering Science	15-20	30	30	30		
4	Professional Core Courses (PC)	30-40	60	78+3=81 (3 credits core in place of Minor project in 7 th semester)	81-3=78 (3 Credits for minor project in 7 th semester)		
5	Professional Elective Courses	10-15	20	20	20		
6	Other Electives	5-10	10	10	10		
7	Project Work	10-15	20	16+2 Major project +Tech. Seminar	16+2+3 Major project +Tech. Seminar +Mini Project		
		•	·	200	200		

Credits Distribution as per UGC/VTU

R.V. College of Engineering, Bengaluru- 560059 (Autonomous Institution Affiliated to VTU, Belagavi) FIRST SEMESTER CREDIT SCHEME FOR PHYSICS CYCLE

			(COMMON 7	TO ALL PROGE	RAMS)			
SI.			D G					
No	Course Code	Course Title	BoS	Lecture	Tutorial	Practical	SS (EL)	Total Credits
1	16MA11	Applied Mathematics- I	Maths	3	1	0	1	5
2	16PH12	Engineering Physics (Theory and Practice)	Physics	4	0	1	0	5
3	16CV13	Elements of civil Engineering	CV	4	1	0	0	5
4	16ME14	Computer Aided Engineering Drawing (Theory and Practice)	ME	1	0	2	0	3
5	16EE15	Elements of Electrical Engineering	EE	4	0	0	1	5
6	16HSC16	Constitution of India and Legal Studies for Engineers	HSS	2	0	0	0	2
7	16HSK17*	Kannada*	HSS	1	0	0	0	0
		Total No. of Credits						25
		No. Of Hrs.		19	04	6	8**	29

*Mandatory Audit course 1 Hr per week

****** Non contact hours

R.V. College of Engineering, Bengaluru- 560059 (Autonomous Institution Affiliated to VTU, Belagavi) FIRST SEMESTER CREDIT SCHEME FOR CHEMISTRY CYCLE

			(COMMON TO	ALL PROGRA	AMS)			
GLN		~			CREDIT ALI	LOCATION		
Sl.No	Course Code	Course Title	BoS	Lecture	Tutorial	Practical	SS (EL)	Total Credits
1	16MA11	Applied Mathematics-I	Maths	3	1	0	1	5
2	16CH12	Engineering Chemistry (Theory and Practice)	Chemistry	4	0	1	0	5
3	16CS13	Programming in C (Theory and Practice)	CS	4	0	1	0	5
4	16EC14	Basics of Electronic Engineering	ECE	4	0	0	1	5
5	16ME15	Basics of Mechanical Engineering (Theory and Practice)	ME	4	0	1	0	5
6	16HSE16*	Professional Practice-I (Communicative English)	HSS	2	0	0	0	0
		Total No. of Credits						25
		No. Of Hrs.		21	2	6	8**	29

*Mandatory Audit course 2 Hrs per week

****** Non contact hours

1Hr. Theory= 1 credit

2Hrs. Practical=1credit

2Hrs. Tutorial=1 credit

4Hrs. SS(EL) = 1 Credit

R.V. College of Engineering, Bengaluru- 560059 (Autonomous Institution Affiliated to VTU, Belagavi) SECOND SEMESTER CREDIT SCHEME FOR PHYSICS CYCLE

		(COI	MMON TO AI	LL PROGRAMS	S)			
CL No.		C T'4	BoS		Total			
Sl. No	Course Code	Course Title		Lecture	Tutorial	Practical	SS (EL)	Credits
1	16MA21	Applied Mathematics-II	Maths	3	1	0	1	5
2	16PH22	Engineering Physics (Theory and Practice)	Physics	4	0	1	0	5
3	16CV23	Elements of civil Engineering	CV	4	1	0	0	5
4	16ME24	Computer Aided Engineering Drawing (Theory and Practice)	ME	1	0	2	0	3
5	16EE25	Elements of Electrical Engineering	EE	4	0	0	1	5
6	16HSC26	Constitution of India and Legal Studies for Engineers	HSS	2	0	0	0	2
7	16HSK27*	Kannada*	HSS	1	0	0	0	0
		Total No. of Credits						25
		No. Of Hrs.		19	04	6	8**	29

*Mandatory Audit course 1 Hr per week

****** Non contact hours

R.V. College of Engineering, Bengaluru- 560059 (Autonomous Institution Affiliated to VTU, Belagavi) SECOND SEMESTER CREDIT SCHEME FOR CHEMISTRY CYCLE

		SEMESTER	(COMMON TO	ALL PROGRA	MS)				
CL N					CREDIT ALLOCATION				
Sl.No	Course Code	Course Title	BoS	Lecture	Tutorial	Practical	SS (EL)	Credits	
1	16MA21	Applied Mathematics-II	Maths	3	1	0	1	5	
2	16CH22	Engineering Chemistry (Theory and Practice)	Chemistry	4	0	1	0	5	
3	16CS23	Programming in C (Theory and Practice)	CS	4	0	1	0	5	
4	16EC24	Basics of Electronic Engineering	ECE	4	0	0	1	5	
5	16ME25	Basics of Mechanical Engineering (Theory and Practice)	ME	4	0	1	0	5	
6	16HSE26*	Professional Practice-I (Communicative English)	HSS	2	0	0	0	0	
		Total No. of Credits						25	
		No. Of Hrs.		21	2	6	8**	29	

*Mandatory Audit course 2 Hrs per week

****** Non contact hours

1Hr. Theory= 1 credit

2Hrs. Practical=1credit

2Hrs. Tutorial=1 credit

4Hrs. SS (EL) = 1 Credit

	Semester: I						
	Course Title: APPLIED MATHEMATICS - I						
Cou	rse Code: 16MA11		CIE Marks: 100				
Hrs/Week: L:T:P:S: 3:2:0:4 SEE Marks: 100							
Credits: 05 SEE Duration: 3Hrs							
Cou	rse Learning Objectives: The stude	nts will be able to					
1	1 Understand the existence of polar coordinates as possible 2-D geometry, curves in polar coordinates and to approximate a function of single variable in terms of infinite series.						
2	Gain knowledge of multivariate functions, types of derivatives involved with these functions, Jacobian as transformation factor and their applications.						
3	Enhance the knowledge level to visualize integrals in higher dimensional and different						
4	Interpret concepts of vector functions vector fields differential calculus of vector						
5	Appreciate the significance of vector integration and its applicability to Electromagnetic						
6	Use mathematical IT tools, to analyz	e and visualize vario	ous concepts.				

UNIT-I	
DIFFERENTIAL CALCULUS I	08 Hrs
Basics of polar coordinates, polar curves, angle between radius vector and tangent,	
p-r equation(pedal equation) of polar curves, Curvature, radius of curvature -	
Cartesian, parametric forms and problems. Taylor series, Maclaurin's series.	
Indeterminate forms- evaluation using L'Hospital's rule.	
UNIT-II	
DIFFERENTIAL CALCULUS II	08 Hrs
Partial Differentiation – Basics, total derivatives-composite and implicit functions,	
Jacobians- properties, Maxima and minima of two variables.	
UNIT-III	
INTEGRAL CALCULUS	09 Hrs
Orthogonal curvilinear coordinates -Introduction, arc, area and volume elements,	
cylindrical polar and spherical polar coordinate systems(only mention of	
orthogonality), Jacobians of these systems.	
Multiple integrals-Double integrals - introduction, direct evaluation, change of	
order of integration, change of variables. Triple integrals - introduction and direct	
evaluation, change of variables.	
Applications – Area, surface area, volume of solids and Center of gravity using	
double and triple integrals.	
UNIT-IV	
VECTOR DIFFRENTIATION	08 Hrs
Scalar and vector fields, vector differentiation, velocity and acceleration vectors,	
gradient, divergence, curl and Laplacian of scalar/vector fields, solenoidal and	
irrotational fields, physical interpretations, simple problems involving practical	
situations. Vector identities and problems.	
UNIT-V	
VECTOR INTEGRATION	07 Hrs
Line, surface and volume integrals. Green's theorem(with proof), Stoke's and	
Gauss Divergence theorems(without proof), solenoidal fields and irrotational fields.	

Ex	Expected Course Outcomes: After completing the course, the students will be able to					
1	Demonstrate the understanding of the basics of polar coordinates and p-r equations,					
	partial differentiation, multiple integrals, vector fields and vector differentiation.					
2	Solve problems on radius of curvature, total derivatives of functions, elements of					
	different dimensions in curvilinear coordinates, double integrals by changing order of					
	integration, velocity and acceleration vectors, line, surface and volume integrals.					
3	Apply acquired knowledge to find infinite series form of functions, Jacobians, multiple					
	integrals by changing variables, different operations using Del operator and to verify					
	integral theorems.					
4	Estimate extremal points of functions of two variables, area, volume using multiple					
	integrals, solenoidal and irrotational fields.					

Text Books

1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 40 th Edition, 2007,
	ISBN: 81-7409-195-5.
2.	B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, 2008, ISBN: 13-
	978-07-063419-0; ISBN: 10-0-07-063419-X.

Reference Books

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9th Edition, 2007, ISBN: 978-81-265-3135-6.
- 2. James Stewart, Calculus- Early transcendental, Cengage learning, 7th Edition 2012, ISBN:10-0538497904, ISBN:13-9780538497909.

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)				
Evaluation method	Course with Self-study			
Quiz -1	10			
Test -1	25			
Quiz -2	10			
Quiz -3	10			
Test -2	25			
Self-study (EL)	20			
Total	100			

Semester End Evaluation Theory (100)	
Part- –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's	
taxonomy level.	

Total	100

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Η	Μ	-	-	-	-	-	-	-	-	-	L
CO2	Η	Μ	-	-	-	-	-	-	-	-	-	L
CO3	Н	Η	L	L	-	-	-	-	-	-	-	L
CO4	Н	Η	L	L	-	-	-	-	-	-	-	L

Semester: I/II					
Course 7	itle: ENGINEERIN	IG PHYSICS			
	(Theory and pract	ice)			
Course Code:16PH12/16PH22CIE Marks:100+50=150					
Hrs/Week: L:T:P:S: 4:0:2:0		SEE Marks:100+50=150			
Credits:05		SEE Duration(Theory) : 3 Hrs			
		SEE Duration(Laboratory) : 3 Hrs			

Сол	rse Learning Objectives: The students will be able to						
1	Understand the working principles of lasers & optical fibers and apply them in s	scienc					
1							
and technology.							
2	Implement the principles of quantum mechanics to various atomic phenomena.						
3	Solve differential equations of harmonic oscillators to analyze experimental situ	uatior					
	applicable to technical field.						
4	Analyze the electrical properties of the conductors and semiconductors.						
5	Explain the dielectric and thermal properties of solids.						
	UNIT-I						
Las	ers and Optical Fibers	08					
bear	rs: Helium -Neon Laser, Semiconductor diode Laser. Characteristics of laser n. Industrial applications of lasers: laser cutting, welding and drilling, surements of pollutants in atmosphere.						
acce fiber App	ciple of Optical fibers: propagation mechanism, condition for propagation, ptance angle and numerical aperture. Modes of propagation, types of optical rs. Attenuation: Absorption, scattering and radiation loss, attenuation coefficient. lication of optical fiber in point to point communication, advantages of optical r communication over electrical mode of communication.						
	UNIT-II						
Qua	ntum Mechanics	11					
	k body radiation spectrum, Laws of black body radiation spectrum, Planck's num theory, Review of Photoelectric effect and Compton effect. Wave - particle	Hrs					
pack	ity, de-Broglie hypothesis. Matter waves: properties of matter waves, wave tet, group velocity, phase velocity and their relations. Application of matter es: Scanning Electron Microscope (SEM) - construction and working.						

Uncertainty principle: Illustrations – Non-confinement of electron inside the nucleus and broadening of spectral lines. Setting up of one dimensional time independent Schrodinger's wave equation- wave function, physical significance of wave function, Eigen function, Eigen values. Application of Schrodinger's wave equation: Free particle, Particle in a one dimensional potential well of infinite depth. Problems.

UNIT-III

Oscillations and Waves	09					
Simple Harmonic Motion, Characteristics of Simple harmonic motion. Un damped /	Hrs					
Free vibrations, differential equations of un damped / free vibrations and solutions.						
Examples of Simple harmonic oscillators a) Spring and Mass system, b) Torsional						
Pendulum. Damped vibrations: Differential equations of damped vibrations and						
solutions. Forced vibrations: Differential equations of forced vibrations and solutions, Resonance. Examples of forced vibrations- LCR circuits. Problems.						
UNIT-IV						
Electrical conductivity in metals and semiconductors						
Electrical conductivity in metals and semiconductors						
Review of Classical free electron theory, Quantum free electron theory. Fermi energy						
and Fermi factor in metals, variation of Fermi factor with temperature. Density of						
states and carrier concentration in metals. Hall effect-Determination of number and						
sign of charge carriers. Band theory of solids, (qualitative approach).						
Intrinsic semiconductors: carrier concentration, concept of effective mass						
(qualitative), derivation of electron and hole concentration, intrinsic carrier						
concentration, Fermi level in intrinsic semiconductors, Expression for the energy gap						
of intrinsic semiconductors.						
Extrinsic semiconductors: Types of extrinsic semiconductors, doping methods						
(qualitative). Variation of carrier concentration in extrinsic semiconductors with						
temperature, variation of Fermi level in extrinsic semiconductors with temperature						
and impurity concentration. Hall effect in semiconductors.						
UNIT-V						
Dielectrics and Thermal conductivity	09					
Dielectrics: Electric dipole, Dipole moment, Field due to electric dipole at a point in a	Hrs					
plane. Polarization of dielectric materials: Types of polarizations, frequency dependence of polarization mechanisms, dielectric loss. Internal field in solids: for						
one dimensional infinite array of dipoles (Lorentz field), Clausius - Mossotti						
equation.						
1						
Thermal conductivity: conduction of heat in solids, steady state, coefficient of						
thermal conductivity, thermal conductivity of a good conductor by Searle's method						
and thermal conductivity of a poor conductor by Lee's and Charlton's method.						
LAB EXPERIMENTS						
1. Verification of Stefan's law						
2. Determination of Planck's constant using LED's of different wavelengths						
3. Analysis of the frequency response of Series LCR circuits and determinat	ion of					
inductance of the given inductor.						
4. Using four probe to determine the resistivity of given semi conductors.						
5. Determination of moment of inertia of an irregular body by Torsional oscillations.						
6. Determination of energy gap of given thermally sensitive resistors.						
7. Determination of Fermi energy of conductors						
8. Identification of the nature of the given semiconductors and determination of the	r Hall					
coefficient and carrier concentration of given materials.						
9. Determination of Dielectric constant by charging and discharging of a capacitor.						
10. Using Searle's method to find the thermal conductivity of good conductors						
11. Thermal conductivity of a poor conductor by Lee's and Charlton's method						
12. Determination of divergence angle of a laser beam						
13. Determination of numerical aperture of an optical fiber						

Note:	Each student has to perform 13 experiments in a semester.					
	10 Experiments are GUIDED experiments					
	03 Experiments involving experiential learning.					
Cours	se Outcomes: After completing the course, the students will be able to					
CO1	Understand the fundamental concepts of Optical Physics, Quantum mechanics, wave					
	theory and conductivities					
CO2	Apply the concepts of Optical Physics, Quantum mechanics, wave theory and					
	conductivities in Engineering domain.					
CO3	Analyze the theoretical concepts and investigate in the laboratory.					
CO4	Demonstrate team work and effective reporting					
Text E	Books					
1	Dr. M N Avadhanulu, Dr. P. G. Kshirsagar, A Text book of Engineering Physics					
	S. Chand & Company Private limited. Revised edition 2015.					
2	R K Gaur and S L Gupta, Engineering Physics, Dhanpat Rai Publications, Revised edition 2011.					
Refere	ence Books					
3	Haliday & Resnic & Walker, Fundamentals of Physics, John Wiley & Sons 2010,					
	ISBN: 9971-51-330-7.					
4	Hitendra K Malik and A K Singh, Engineering Physics, Tata McGraw Hill Education					
	Private Limited, 2009, ISBN:978-0-07-067153-9.					

	Continuous Internal Evaluation (CIE)							
(Theory – 10	00 Marks)	(Laboratory- 50 Marks))	Total				
Evaluation method	Course with assignment	-		(150)				
Quiz -1	10	Performance of the student in						
Test -1	30	the laboratory, every week	40					
Quiz -2	10							
Quiz -3	10	Test at the end of the semester	10					
Test -2	30		10					
Assignments	10							
Total	100	Total	50	150				

Semester End Ev	aluatio	n (SEE)		
Theory (100 Marks)	Laboratory(50 M	arks)	Total (150)	
Part- –A	20	Experiment		
Objective type questions		Conduction with	40	
Part –B		proper results		
There should be five questions from five units.		Viva	10	
Each question should be for maximum of 16				
Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not	80			
have any choice.				
The UNIT-2 and UNIT-3 should have an internal				
choice.				
Both the questions should be of the same				
complexity in terms of COs and Bloom's				
taxonomy level.		1		
Total	100	Total	50	150

					CO-F	O Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	Н	М	L	-	-	-	-	-	-	-	Μ
CO2	L	Н	Н	L	-	-	-	-	-	-	-	Μ
CO3	L	Н	Η	Η	-	-	-	-	-	-	-	Μ
CO4	L	Н	М	L	-	Μ	-	-	М	Μ	-	Μ

		Semester: I / II				
	Course Title: EL	EMENTS OF CIVIL ENGIN	EERING			
Co	urse Code: 16CV13/23		Marks:100			
Hr	s/Week: L:T:P:S: 4:2:0:0	SEE	Marks:100			
Cr	Credits::05 SEE Duration: 3 hrs					
Co	urse Learning Objectives: The	e students will be able to				
1		nake every engineering student hey can use their domain kno				
2	Identify the components and m	aterials used for building constr	ruction.			
3	Interpret the behavior of rigid	and deformable bodies to solve	engineering probler	ms.		
4	Apply principles of mechanics	for solving Civil Engineering p	roblems.			
		UNIT-I				
Bu Ce Bu Co foc Co	Engineering for various engineering domains. Building materials – Properties and Engineering applications of Stones, Bricks, Cement, Concrete, Concept of Reinforced Cement Concrete (RCC). Building components. Concept of Sub Structure Components- Masonry Foundation; Isolated RCC footing ; Raft Foundation , End bearing piles and friction piles. Concept of Super structure components– Components and types of walls, Doors, Windows, Roofs, Flooring and stairs.					
		UNIT-II				
For Tra cha the me Eq pla	Introduction to Engineering Mechanics Force- Concepts, Characteristics, Force systems and types, Principle of Transmissibility of force, Principle of Superposition, Moment of a force, Couple, characteristics of couple, Resolution and composition of forces, Varignon's theorem, resultant of coplanar concurrent and non-concurrent force systems by method of resolution Numerical problems. Equilibrium of force systems: Free body diagram, conditions of equilibrium of Co planar concurrent and non-concurrent force systems, Lami's Theorem Numerical Problems.					
		UNIT-III				
Inc sub	Beams: Types of Loads, Supports for beams; Statically determinate and Indeterminate Beams, Numerical Problems on Statically determinate beams subjected to concentrated load , Uniformly Distributed Load, Uniformly Varying Load, Moment and their combinations.9H					
fric	Friction – Types of friction, Laws of static friction, limiting friction, Angle of friction, Impending motion on horizontal and inclined planes, wedge friction, ladder friction – Numerical problems.					
Ce	ntroid: Concept of center of g		etry, Location of			
	troid of Rectangle, Triangle, thod of integration; Numerical	-	-			

Second Moment of Area : Concept of Second moment of area, Radius of gyration, Polar moment of inertia, Perpendicular axis theorem and Parallel axes theorem; Second moment of area of rectangular, circular and triangular sections by method of integration; Numerical problems on composite sections (not more than three sub- sections).
Second moment of area of rectangular, circular and triangular sections by method of integration; Numerical problems on composite sections (not more than three subsections).
of integration; Numerical problems on composite sections (not more than three sub- sections).
sections).
UNIT-V Simple Stresses and strains :Hooke's law, Stress Strain behavior of mild steel and
concrete; Analysis of bars of uniform and varying cross sections, Tapering and 9Hrs
stepped bars ; Analysis of Simple and Composite bars of equal and unequal lengths
; Elastic constants and their Interrelationships, Volumetric strain Numerical
problems.
Expected Course Outcomes: After completing the course, students will be able to
1 Describe fundamental concepts of Civil Engineering structures, mechanics and materials.(L1)
2 Discuss components of building, behavior of rigid and deformable bodies. (L2)
3 Apply the concepts of mechanics and materials used in Construction for engineering problems. (L3)
4 Demonstrate the applications of fundamentals for solving engineering problems.(L4)
Text books:
1 S. Ramamrutham, "Strength of Materials", Dhanpat Rai Publishing Company,
18thEdition, 2014, ISBN-10: 9384378267, ISBN-13: 9789384378264.
2 Ferdinand P.Beer and E.Russel Johnston Jr, "Mechanics for Engineers – Statics",
McGraw Hill book Inc., U.S.A, 4th Edition, 2009, ISBN- 007100135.
3 Sushil Kumar, "Building Construction", Standard Publishers ,20th Edition, 2016, ISBN
9788180141683.
Reference books:
1 A.Nelson, "Engineering Mechanics, Statics and Dynamics", Tata McGraw Hill
Publication, 1st Edition, 2010, ISBN -10-0-07-014614-4, ISBN-13: 978-0-07-014614-3.
2 S. S Bhavikatti, "Strength of Materials", Vikas Publishing house pvt. LtdNoida, 3 rd
Edition, 2013,ISBN-10: 8125927913, ISBN-13:9788125927914

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)					
Evaluation method	Course with assignment				
Quiz -1	10				
Test -1	30				
Quiz -2	10				
Quiz -3	10				
Test -2	30				
Assignments	10				
Total	100				

Semester End Evaluation				
(Theory -100 Marks)				
Part- –A	20			
Objective type questions				
Part –B				
There should be five questions from five units. Each question should be for maximum				
of 16 Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.				
The UNIT-2 and UNIT-3 should have an internal choice.	80			
Both the questions should be of the same complexity in terms of COs and Bloom's				
taxonomy level.				
Total	100			

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	М	L	-	-	-	М	М	L	L	-	-	М	
CO2	М	М	-	-	-	L	-	-	L	-	-	L	
CO3	М	М	L	-	-	М	М	-	L	-	-	М	
CO4	М	М	L	-	-	М	-	-	-	-	-	L	

		Semester: I / II									
	Course Title: COMP	UTER AIDED ENGINEERING DRAWING									
		(Theory and practice)									
Course	Code: 16ME14/24	CIE Marks: 50									
Hrs/ we	eek: L:T:P:S: 2:0:2:0	SEE Marks: 50									
Credits	s:03	SEE Duration: 3 ho	ours								
Course	Learning Objectives: Th										
1 Familiarize with the conventions and standards used in Engineering Drawing and											
	principles of orthographic and isometric projections for visualization of three										
	dimensional objects										
2	Apply the principles of orthographic projections to draw elevation, plan and profile										
	views of lines, planes and										
3		rojection of lines to find solutions to practical pro-	oblems								
	involving distances and in	nclinations									
4	Apply the fundamentals of	of solid geometry and develop lateral surfaces of	solids								
5	Develop competence in S	olidworks as an effective tool for Engineering G	raphics								
			-								
	P	art A (Manual Drawing)									
Conver	ntions and Standards:	Standard sizes of drawing sheets, Lin	es, 13								
	tioning, Scales, conventions		Hrs								
	e l	l planes - HP, VP, RPP and LPP, Orthograp									
-		hird and fourth Angle of Projection	line								
	tion of points in four quadr	e v									
		st Angle Projection) - True and Apparent leng	ths								
•	8	ems on projections of straight lines									
		e) (First Angle of Projection) - Projection	of								
•		onal, hexagonal and Circular plane surfaces									
-	of position method		5								
		ual and Computer Aided Drawing)	•								
Project		of right regular solids - cubes, tetrahedrons, prisi	ns, 20								
pyramio	ds, cylinders and cones (w	ith axis inclined to both HP and VP) by change	of Hrs								
positior	n method, Section of solid	s (cube, prism, pyramid, cone and cylinder) us	ing								
0	plane inclined to HP only.										
		lel line and Radial line methods - Development	of								
		s, cylinders, cones and truncated solids									
	5	n, hexahedron, prisms, pyramids, cylinders, con									
-	-	nation of co-axial solids, Conversion of Isomet	ric								
· ·	on to Orthographic views										
		er completing the course, the students will be									
1	-	in the basics of Orthographic Projections of po									
2	·	r presentation in the three Principal Views (L1,									
2		F orthographic projections to find solutions t	o rear fife								
2	· · ·	nces and inclinations (L3)	ione (IA)								
3		rojections of solids for drawing Isometric Project									
4	combination(L4)	s of solids, create isometric projections of	solids of								
Text B											
		ineering Graphics";Subhash Publishers, Banga	lore · 32 nd								
	Edition;2011	meeting Oraphies ,Subhash Fublishers, Ballga	1010, 32								
1	2011/011,2011										

Refer	rence Books
2	N D Bhatt & V M Panchal, 'Engineering Drawing', Charutha Publishing House,
	Gujarat, 48 th Edition , 2005, ISBN:9380358178
3	Luzadder Warren J, Duff John, "Fundamentals of Engineering Drawing with an
	Introduction to Interactive Computer Graphics of Design and Production", Prentice
	Hall of India Pvt. Ltd, New Delhi, Eastern Economy Edition, 2005;ISBN:8120308859

Continuous Internal Evaluation (CIE)										
Evaluation method Course with assignment										
Manual drawing and print out of exercises evaluated for	30									
Test	20									
Total	50									

Semester End Evaluation							
Part- –A Students have to answer TWO full questions from Part A (Manual Drawing) of 10 marks each	20						
Part –B TWO Questions from Part B of 15 marks each (Computer aided drawing)	30						
Total	50						

	CO-PO Mapping												
CO/P	CO/P PO PO1 PO1												
0	1	2	3	4	5	6	7	8	9	0	1	2	
CO1	Н	L	Μ	L	Μ	-	-	-	-	-	-	-	
CO2	Η	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-	
CO3	Н	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-	
CO4	Μ	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-	

		Semester: I/II							
		EMENTS OF ELECTRICAL ENGINEERING							
Course	e Code: 16EE15/25	CIE Marks:10	0						
Hrs/W	eek: L:T:P:S: 4:0:0:4	SEE Marks:10	0						
Credit	s:05	SEE Duration	03 Hrs						
Cours	Course Learning Objectives: The students will be able to								
1 Analyze the basic concepts of the electrical ac and dc circuits									
2		ples of ac & dc machines							
3	Develop the concepts o	1							
4	Develop an awareness of available.	of various energy sources (conventional & non convent	ional)						
5	Apply the basic electric	cal concepts in their chosen field.							
		UNIT-I							
analysi sources star-de Electro dynam coeffic Single instant sinusoi	is of series, parallel and se s, Concept of mesh curre lta conversion, Illustrative omagnetism: Faraday's ically induced EMFs, co ient of coupling, energy st Phase A.C Fundame aneous value , average v idal voltage and current, o	m's law and Kirchhoff's laws, Applications for the eries- parallel circuits excited by independent voltage ent analysis, Network reduction methods including examples. laws, Lenz's law, Fleming's rules, statically and oncept of self and mutual inductances, concept of cored in magnetic field, illustrative examples. entals : Generation of sinusoidal AC voltage, value, R.M.S value, form factor and peak factor of concept of phase and phase difference of alternating dal wave, phasor representation. UNIT-II	07 Hrs						
 Single Phase Circuits: Definition of real power, reactive power, apparent power and power factor. Analysis of R, L, C, R-L, R-C, R-L-C circuits along with phasor diagram. Analysis of series, parallel and series - parallel circuits with illustrative examples. Concept of power factor improvement. Three Phase Circuits: Generation of three phase balance A.C and advantages of, phase sequence, relationship between line and phase quantities for balanced star and delta connections, measurement of three phase power using two watt meters, effect of PF on wattmeter readings. Illustrative examples 									
		UNIT-III							
(core a lagging	nd shell types). EMF equa	eration and construction of single phase transformers ation, principle of working on no-load and load (UPF, losses and efficiency, definition of voltage regulation,	08Hrs						
constru examp	actional features and ap	rotating magnetic field, principle of operation types, oplications, slip and it's significance. Illustrative tions). Torque - slip characteristics, necessity of a							

	UNIT-IV	
Const EMF	Machines: Working principle of DC machine as a generator and as a motor. tructional features, EMF equation, No load characteristics of generator. Back and torque equation of DC motors. Types of DC motors, characteristics and cations, Illustrative examples. Necessity of a starter.	07 Hrs
	hronous Generators: Principle of operation, types and constructional features generator, E.M.F equation, synchronization of alternators with bus bar.	
	UNIT-V	
earthi speci	ric Wiring : Two-way and three way control of lamp, Necessity and types of ing, elementary idea of Fuses and MCB, Indian standards of wire gauges and fication wiring diagram of a residential buildings, working of incandescent, escent, sodium vapor lamps. CFL and LED lighting, Decorative Series lighting.	06 Hrs
syster conve diagra	Conventional Energy: Definition of Renewable and non renewable energy ms and explanation with block diagram approach of different types of entional energy systems (Hydel, Thermal, Nuclear). Explanation with block am approach of different types of non conventional energy systems (wind,). Comparison of conventional and non conventional energy sources.	12 Hrs
Case cours		
	cted Course Outcomes: After completing the course, the students will be able	
1	Understand the fundamentals of AC, DC, electromagnetism, AC circuits, tran induction motors, DC machines, synchronous machines, electric wiring conventional energy sources.	
2	Analyze AC, DC circuits, working and construction of AC and DC r transformers, induction motors, DC machines and synchronous machines,	nachines,
3	Evaluate the performance of AC and DC machines, transformers, Induction mo machines, synchronous machines and various non conventional energy so different applications.	
4	Design and plan the layout of electrical wiring scheme for a residential building	
Refe	rence Books	
1	E.Hughes, 'Electrical Technology', International Students, Pearson, 2005, 9th ISBN: 0131143972	
2	G.D.Rai , 'Non conventional energy sources', Khanna Publishers , 2006, 4 th ISBN:0471223719	ⁿ edition,
Text	Books	
1	V.N Mittle and Aravind Mittal, 'Basic Electrical Engineering', 2006, Tata Mc O Publishing Company Ltd., 2 nd Edition, ISBN-10: 0070593574.	Graw Hill
2	Rajendra Prasad,' Fundamentals Of Electrical Engineering',2009, PHI Learnir Edition, ISBN 10: 8120339282 ISBN 13: 9788120339286	ng, ., 2nd

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)									
Evaluation method	Course with Self-study								
Quiz -1	10								
Test -1	25								
Quiz -2	10								
Quiz -3	10								
Test -2	25								
Self-study (EL)	20								
Total	100								

Semester End Evaluation						
Theory (100 Marks)						
Part- –A	20					
Objective type questions	20					
Part –B						
There should be five questions from five units. Each question should be for maximum of 16 Marks.						
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.						
The UNIT-2 and UNIT-3 should have an internal choice.	80					
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.						
Total	100					

	CO-PO Mapping											
CO/	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PO	PO
РО	1	2	3	4	5	6	7	8	9	10	11	12
CO1	М	L	L	-	-	L	-	-	-	L	-	-
CO2	М	Н	L	L	-	L	-	-	L	L	-	-
CO3	Н	Н	М	М	-	М	М	L	L	L	-	М
CO4	Н	М	Н	Н	-	М	М	-	L	L	-	L

		I /II Semester		
		DIA & LEGAL STUDIES FOR ENGINEER		
Co	urse Code:12HSC16/26	CIE Marks:		
	Hrs/Week: L:T:P:S: 2: 0: 0: 0 SEE Marks: 50			
	edits:02	SEE Duration	n: 2Hrs	
Co	urse Learning Objectives: The	students will be able to		
1	Apply the knowledge of the corrights and duties in their role a	onstitutional literacy to become aware of the fu	ndamental	
2	Understanding of ethical and	legal aspects of advertising, consumer problem product and service standards.	s and their	
3		integrated understanding of the nature and ex	tent of the	
c		to understand how this principle applies to		
4	•	nd application of the Corporate Law.		
	L	UNIT-I		
Sco		tution: Preamble to the Constitution of India. Lights under Part III. Right to Information Act	06 Hrs	
		UNIT-II	•	
Dut		ey - Its meaning and Significance. Fundamental d State, Parliament & State Legislature. Union	04 Hrs	
		UNIT-III		
Stat wor	tutory Provision regarding prohi	of Law -Corporate Social Responsibility, bition and prevention of Sexual Harassment at ovisions, Human Rights & Human Rights	04 Hrs	
		UNIT-IV		
Inco Doc	orporation, Memorandum and A	bration and Management - Certificate of Articles of Association, Doctrine of Ultra Vires, t, Directors; Types of Companies- Private ne Person Company' (OPC).	05 Hrs	
		UNIT- V		
Res Lav	strictive Trade Practice, Defec	Rights of Consumers. Unfair Trade Practice, t in goods, Deficiency in service: Medical, Postal services etc. Enforcement of Consumer	05 Hrs	
Act	tivities Recommended-Videos,	Mock activities, visit to consumer forum/court	1	
Exp	pected Course Outcomes: Afte	r completing the course, the students will be a	able to	
CO	1 Understand process of ethic	cal and moral analysis in decision making sce s a trait for professional development.		
CO		lve practical problems with regard to personal	issues &	

CO3	3 Identify the conflict management in legal perspective and judicial systems pertainin to professional environment, strengthen the ability to contribute to the resolution of			
	human rights & Ragging issues and problems through investigative and analytical skills.			
CO4	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility and capability and to take affirmative action as a responsible citizen.			
Text	Text Books			
1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 53 rd Edition, 2016			
2	Avtar Singh: Law of Consumer Protection: Principles and Practice, 4 th Edition, Eastern Book Company, 2005, ISBN 8170128544, 9788170128540			
3	Avtar Singh, Company Law, 16 th Edition Eastern Book Company, 2015 Lucknow.			

Continuous Intern	nal Evaluation (CIE)
Evaluation method	Course with assignment
Quiz -1	05
Test -1	15
Quiz -2	05
Quiz -3	05
Test -2	15
Assignment	05
Total	50

Semester End Evaluation (SEE) Theory (50 Marks)	
Part- –A	10
Objective type questions	
Part –B	
There should be five questions from five units. Each question should be for maximum of 8 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	40
The UNIT-2 and UNIT-3 should have an internal choice. Both the questions should	
be of the same complexity in terms of COs and Bloom's taxonomy level.	
Total	50

					CO-	PO Ma	apping					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PO												
CO1						Η		Η		L		Μ
CO2						Н	L	Н	Н	L		Μ
CO3						Н	L	Μ	Μ	L		Н
CO4								Н	Н	Н		Н

	I /II Semester					
	<u>KANNADA KALI (Spoken Kannada)</u>					
	(To those students who does not know Kannada)					
Co	Course Code:12HSK17/27 CIE Marks: 50					
Hrs/Week: L:T:P:S: 1: 0: 0: 0 SEE Marks:						
Cre	edits : Audit	SEE Duration:				
Co	Course Learning Objectives: The students will be able to					
1	1 Introduce spoken Kannada to those students who does not know Kannada (Kannada Kali)					
2	2 Introduce to reading & writing to those students who know only speaking Kannada					
	(Kannada Lipi)					
3	Introduce to students who have already studied Kannada (Kannada Anubhava)					

1. namaskaara

Introducing the self, enquiring about mother tongue, native place, profession etc., interrogative particles

- **2. niivu cennaagiddiiraa?** Enquiring about the welfare, personal pronouns, possessive forms
- 3. nimage eenu beeku?
- 4. nimage kannada gottaa?
- **5.** nanage meeshTra kelasa ishTa 'yes'/'no'/'not' type of interrogative and assertive sentences, modal verbs and negations.
- **6. oLLeya** *college* Qualitative and quantitative adjectives

7. aakaaSada baNNa niili

Locative case markers, post positions and colours

- 8. ivattu eshTane taariikhu? Cardinal numbers, numeral adjectives, ordinal numbers, human numerals, weekdays and kinship words
- 9. *College* bassu eshTu ganTege ide? Dative case markers,

10. naanu bengaLuuralli iddiini

Present tense, habitual future tense form of verb root IRU,

11. RV collegealli ooduttiini

Introducing few frequently used verb forms like nooDu, maaDu, hoogu, koDu, keeLu, kuDi, hoDi, bari etc.,. Simple present tense and habitual future tense form of human and non-human verbs.

12. Record bariibeeku

Definitive, permissive and prohibitive form of verbs

13. bengaLuurige yaavaaga bandri?

Past tense form of verbs(human and non-human)

14. dina nityada sambhaashaNe

Few simple conversations related to day-to-day activities

15. Few ritual words/sentences which are frequently used in spoken Kannada

Note: Introducing few ritualistic words/sentences/phrases in each lesson.

MODILITY

To understand and converse in Kannada at places/situations like canteen, mess, hotel, hostel, while travelling in auto/bus/train/bus station/railway station/post office/bank; conversing with general public, over phone etc.,.

	I /II Semester			
KANNADA LIPI				
(To those students who know o	only speaking and does not know reading & writing)			
Course Code:12HSK17/27	CIE Marks: 50			
Hrs/Week: L:T:P:S: 1: 0: 0: 0	SEE Marks:			
Credits : Audit	SEE Duration:			

Introduction of Kannada alphabets (primary letters);

Combination of secondary symbols of vowels with consonants ('kaaguNita');

Secondary symbols of consonants and its combination with other consonants (both homogenous and heterogeneous).

MODILITY

To read Kannada script.

I /II Semester	
<u>ಕನ್ನಡಅನುಭವ (ಕನ್ನಡಕಲಿತ</u>	<u>ವರಿಗೆ)</u>
Course Code:12HSK17/27	CIE Marks: 50
Hrs/Week: L:T:P:S: 1: 0: 0: 0	SEE Marks:
Credits : Audit	SEE Duration:

ಪರಿವಿಡಿ

ο,	ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ (ಇತಿಹಾಸ)
	- ಡಾ. ಎಂ.ಚಿದಾನಂದ ಮೂರ್ತಿ
.9.	ವಿಜ್ಞಾನ ಬರವಣಿಗೆಗಳ ಫಾಹಾಂತರ(ವಿಜ್ಞಾನ ಸಾಹಿತ್ಯ)
	– ಪೆ. ಆರ್. ಲಕ್ಷ್ಮಣರಾವ್
а.	ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗ (ಕಾವ್ಯ)
	– ఆస. డి.వి. గుండల్ల
Ψ.	ರಾಧಾಕೃಷ್ಣನ್ (ವ್ಯಕ್ತಿಚಿತ್ರ)
	– ಎ. ಎಸ್. ಮೂರ್ತಿರಾವ್
3.	ಕುಚೇಲನ ಭಾಗ್ಯ (ಸಣ್ಣಕಥೆ)
	– ಮಾಸ್ತಿ ವೆಂಕಟೇಶಆಯ್ದಂಗಾರ್
ě.,	ಎದೆತುಂಬಿ ಹಾಡಿದೆನು (ಕಾವ್ಯ)
	– ಡಾ. ಜಿ. ಎಸ್ ಕಿವರುದ್ರಪ್ಪ
٤	? ? ? (ముక్త బ్రబంధ)
	– "గౌశమ"
6.	ಮೂರ್ಖರಂಜ್ಯದಲ್ಲಿ (ಜನಪದಕಥೆ)
ε.	ವಚನ ಸಾಹಿತ್ಯ ಮತ್ತುದಾಸ ಸಾಹಿತ್ಯ
	– ಸರ್ವಜ್ಞ, ಬಸವಣ್ಣ ಮತ್ತು ಪುರಂದರದಾಸರು
00.	
	– ಎಸ್. ರಾಮಮೂರ್ತಿ
00.	ರತ್ನನ್ ಪರ್ಪಂಚ (ಪದ್ಯ)
	– ಜೆ. ಪಿ.ರಾಜರಕ್ನಂ
0.5.	ತಲ್ಲ ಪರ್ವ (ಮಹಾಭಾರತದಒಂದು ಪ್ರಸಂಗ)
	– ಎ. ಆರ್. ಕೃಷ್ಣಪಟ್ಟಿ
08.	ಆಡಳಿತ ಕನ್ನಡ
	– ಎಚ್. ಜೆ. ಶ್ರೀನಿವಾಸ ಪ್ರಸಾದ್

MODILITY

ಕನ್ನಡದ ಸಾಹಿತ್ಯದಲ್ಲಿನ ವಿವಿಧ ಪ್ರಕಾರಗಳನ್ನು ಪರಿಚಯಿಸಿಕೊಳ್ಳುವುದು; ಕನ್ನಡಓದು. ಬರಹದಪ್ಪಾನವನ್ನು ವಿಸ್ತರಿಸಿಕೊಳ್ಳುವುದು; ವಿವಿಧ ತಂತ್ರಪ್ಪಾನಗಳ ಕುರಿತುಜನಸಾಮಾನ್ನದಿಗೆಅರ್ಥವಾಗುವಂತೆಕನ್ನಡದಲ್ಲಿ ಲೇಖನಗಳನ್ನು ಬರೆಯುವುದು; ಕನ್ನಡದ ಕೆಲವು ಸಾಹಿತಿಗಳನ್ನು ಪರಿಚಯಿಸಿಕೊಳ್ಳುವುದು; ಉತ್ತಮ ಮೌಲ್ಯಗಳನ್ನು ಬದುಕಿನಲ್ಲಿ ಅಳವಡಿಸಿಕೊಂಡು ಭವಿಷ್ಯವನ್ನು ರೂಪಿಸಿಕೊಳ್ಳುವುದು.

	Semester: II
APP	LIED MATHEMATICS - II
Course Code: 16MA21	CIE Marks: 100
Hrs/Week: L:T:P:S: 3:1:0:4	SEE Marks: 100
Credits: 05	SEE Duration: 3Hrs

Course Learning Objectives: The students will be able to

1	Develop the knowledge of Differential and Integral calculus to functions of complex variable and
	thereby to be able to understand field problems in engineering.

2	Recognize and model differential equations, apply analytical techniques to compute solutions for
	engineering problems.

3	Learn to investigate the finding of approximate solutions using numerical methods in the absence
	of analytical solutions of various systems of equations.

4 Use mathematical IT tools, to analyze and visualize various concepts.

UNIT-I

08 Hrs

COMPLEX ANALYSIS - I – COMPLEX DIFFERENTIATION Functions of complex variables, limit, continuity and differentiability, analytic function, Cauhy-Riemann(C-R) equations in Cartesian and polar forms, consequences, construction of analytic function – Milne-Thomson method (Cartesian and polar forms). Definition of conformal transformations, discussion of $w = z^2$, e^z and $z + a^2/z$, $z \neq 0$ and bilinear transformations.

UNIT-II	
COMPLEX ANALYSIS - II – COMPLEX INTEGRATION	08 Hrs
Line integral, Cauchy's theorem (with proof), corollaries, Taylor's and Laurent's series,	
singularities, poles, calculation of residues, Residue theorem – problems.	

UNIT-III	
LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER	09 Hrs
Standard form of higher order linear differential equation with constant coefficients,	
concept of different types of solutions. Solution of homogeneous equations -	
complementary functions. Non homogeneous equations- Concept of Inverse differential	
operator ,methods of finding particular integral based on input function(force function),	
method of variation of parameters. Equations with functional coefficients - Cauchy and	
Legendre equations, solutions. Applications-Simple harmonic motion, LRC circuits.	

UNIT-IV

NUMERICAL METHODS - I	07 Hrs
Algebraic and Transcendental equations – roots of equations, intermediate value property,	
Regula-Falsi, Newton-Raphson and modified Newton-Raphson methods.	
Methods of solving first order ordinary differential equation(ODE) – Taylor series method,	
modified Euler method, 4 th order Runge-Kutta metod, Milne predictor –corrector method.	
	1

UNIT-V	
NUMERICAL METHODS - II	08 Hrs
Finite differences, concept of forward and backward differences, introduction to	
interpolation(extrapolation). Newton-Gregory(N-G) forward and backward interpolation	
formulae, Lagrange interpolation formula, application oriented problems. Numerical	
differentiation based on N-G forward and backward interpolation, simple applications -	
velocity, acceleration.	
Numerical integration- Newton-Cotes approach – Simpson'a 1/3 rd , 3/8 th rules and	
Weddle's rule. Gauss Quadrature approach – 2-point and 3-point formulae.	

Expected Course Outcomes: After completing the course, the students will be able to

- Demonstrate the understanding of properties of complex functions and define 1 conformal transformation, classification and types of solutions of higher order linear differential equations, necessity of numerical methods and few basic definitions.
- Solve homogeneous linear differential equations, use CR equations and related 2 properties of complex functions, Cauchy's theorem and corollaries, interpolate data using finite differences and use intermediate value property.
- Apply acquired knowledge to construct analytic function, use Cauchy integral 3 formula and find Laurent's series, find derivatives and integrals of numerical data and solve differential equations numerically.
- Estimate singularities and residues, solve problems using 4 conformal transformations and applications of differential equations using both analytical and numerical methods.

Text Books

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 40th Edition, 2007, ISBN: 81-7409-195-5.
- 2. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill, th Edition, 2008, ISBN: 13-978-07-063419-0, ISBN: 10-0-07-063419-X.

Reference Books

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 9th Edition, 2007, ISBN: 978-81-265-3135-6.
- M. K. Jain & S.R.K. Iyengar, Numerical Methods for Scientific and Engineering Computation, 2. New Age International, 4th Edition, ISBN: 81 -224 -1461-3.

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)				
Evaluation method	Course with Self-study			
Quiz -1	10			
Test -1	25			
Quiz -2	10			
Quiz -3	10			
Test -2	25			
Self-study (EL)	20			
Total	100			

Semester End Evaluation	
Theory (100)	
Part- –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and Bloom's	
taxonomy level. Total	100

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Η	Μ	-	-	-	•	-	-	-	-	-	L
CO2	Η	Μ	-	-	-	-	-	-	-	-	-	L
CO3	Η	Η	Μ	L	Μ	•	-	-	-	-	-	L
CO4	Η	Η	Μ	L	Μ	-	-	-	-	-	-	L

		Semester: I/II			
	Course 7	Title: ENGINEERING CHE	MISTRY		
		(Theory and practice)			
	e Code: 16CH12/22		CIE Marks: 100+50		
	eek: L:T:P:S: 4:0:2:0		SEE Marks:100+50		
Credit	s:05		SEE Duration(Theory)		
			SEE Duration(Lab) : 3	hrs	
Course	e Learning Objectives:	The students will be able to			
1		concepts of chemistry behind		uturistic	
	**	lications in Engineering and tee			
2	-	y and processes involved in	development of alterna	ate and	
	sustainable energy sour				
3		nowledge of behaviour of mar		role in	
		and design of products in Engin			
4	Understand the import	ance of natural resources and	aim at solutions for sus	tenance	
	of life.				
5	Motivate to gain the kr	nowledge of analytical technique	ues involved in the analy	sis and	
	characterization of mat				
		UNIT-I			
Natur	al Sources and their Ch	nemistry		09	
		ion, specification of potable v	vater Water analysis -		
		Oxygen Demand (BOD), Cher		Hrs	
		ns. Determination of different			
	*	ical problems on hardness and			
	•	r by Reverse Osmosis. Membr	•		
		nembranes for desalination pro			
	- · ·	on, Definition, classification			
		fic Value - Gross calorific v			
		Determination of calorific valu			
		umerical problems. Alternate li			
		Meaning, reasons for Knocki			
		ine number, Cetane number.			
		UNIT-II			
Flootr	ochemical energy system		I	09	
		ial – Origin of Single Electro	de Potential Galvanic		
		ernst Equation and numerical		Hrs	
of Ner	nst equation- Potentiome	etric Titrations, P ^H determinatio	n.		
Types	of Electrodes - Metal	-Metal-ion, Metal-gas, metal	insoluble salt Redox		
• •	de, Ion selective electrod				
	-	Calomel electrode and Glass el	ectrode. Determination		
of pH using Glass electrode and numerical Problems.					
Applications of electrochemistry in biological systems: Nerve conduction.					
Battery Technology – Characteristics and Classification – primary, secondary and					
Reserve batteries. Construction and Working of Lithium batteries- LiCoO ₂ .					
	Fuel cells – Classification based on electrolyte. Construction and working of				
Methanol-Oxygen fuel cell					
	• •	UNIT-III			
Corro	sion Science and contro			09	
		tion, types, Dry corrosion &	z Wet corrosion with	U2	
20110	store Service, multidue				

 examples, Electrochemical theory of corrosion with respect to Fe. Galvanic Series, Types of corrosion-Differential Metal Corrosion, Differential aeration corrosion, Pitting corrosion and Water line corrosion. Stress corrosion- Caustic embrittlement. Factors affecting the rate of corrosion- nature of metals, corrosion product, pH of the medium, Temperature, Polarization, Relative anodic & cathodic areas. Corrosion Control: Coating techniques: Chemical conversion coating, organic coating and Metallic coating. Chemical conversion coating-Phosphating, Anodising. Organic coating-Paints, Enamels, and Lacquers. Metallic coating-Introduction-anodic and cathodic coating, Technological importance. Electroplating - Introduction, Principle, Factors influencing nature of deposition, Chrome Plating. Electroless plating- Introduction, Principle, Distinction between electro plating and electroless plating. Application: Electroless plating of Cu-Fabrication of PCB. 	Hrs
UNIT-IV	
Nanomaterials Chemistry	09
 Nanomaterials Cnemistry Introduction to Nanomaterials/Science/Technology, Defining nano dimensional materials –Atom, cluster, nano materials, micro materials, and bulk. Properties of Nanomaterials in comparison to bulk: Surface area, Optical, Magnetic, Electrical. Mechanical etc. Synthesis of Nanomaterials: SCS for metal oxide, Sol-Gel- for TiO₂ nanoparticles Carbon Nano materials: Carbon nanotubes: Introduction, different forms, doping, preparation, functionalization, properties and applications. Graphene: Introduction, Preparation, properties and applications. Nano materials for Energy conversion devices: Semiconductor nanostructure like TiO₂, CdS for photovoltaics and photo electrochemical cells, Optical properties, Band gap Modulation with nano size with above examples. Nanomaterials for LED: Introduction, Construction and working of inorganic/organic LED with nanomaterials. 	09 Hrs
UNIT-V	
Polymeric materials	09
Introduction to polymer, Methods of Polymerisation, glass transition temperature, factors affecting Tg. Thermo plastic polymers : Polycarbonate, ABS preparation, and specific applications in industries.	Hrs
 Thermosetting polymers: Epoxy resin, phenol formaldehyde synthesis, properties and applications Biodegradable polymers: Introduction and their requirements. Properties and synthesis of Poly lactic acid and poly caprolactum. Applications of biodegradable polymers in medical industry. Smart Polymeric materials Conducting polymers: Introduction, requirements for conducting polymers, mechanism of conduction, synthesis of poly aniline and polypyrrole, use of conducting polymers in energy harvesting, sensing and defence applications. Photo conducting polymers: Synthesis of poly vinyl carbazole applications of photo-conducting polymers in printing. Synthetic Fibres: Synthesis of carbon fibre from PAN, applications of carbon fibre 	
in polymer composites.	

	PRACTICALS	
Volun	netric Analysis and Preparations	
1.	Determination of hardness of water sample.	
2.	Determination of calcium oxide in the given sample of cement solution (Rapid EDTA method)	
3.	Estimation of percentage of copper in brass.	
4.	Estimation of iron in the given sample of haematite ore.	
5.	Determination of Chemical Oxygen Demand (COD) of the given industrial waste water sample.	
6.	Determination of Dissolved Oxygen in the given water sample by Winkler's method.	
7.	Preparation of polystyrene by bulk polymerization method.	
8.	Preparation of MgO by solution combustion method.	
Instru	mental methods of Analysis	
1.	Determination of pKa of a weak acid using pH meter.	
2.	Potentiometric titration – Estimation of FAS using standard $K_2Cr_2O_7$ solution.	
3.	Colorimetric estimation of copper.	
4.	Conductometric estimation of HCl using standard NaOH solution.	
5.	Determination of viscosity coefficient of a given liquid using Ostwald's viscometer (density of the liquid to be given).	
6.	Flame photometric estimation of sodium in the given solution.	
7.	Determination of relative and kinematic viscosities of a given lubricating oil at different temperatures using Redwood Viscometer.	
8.	Determination of T _g of polymer using DSC.	

Expect	ed Course Outcomes: After completing the course, the students will be able to					
1	Explain the principles of Chemistry in Engineering. (L1)					
2	Apply the knowledge of Chemistry in solving societal problems related to public					
	health, safety and environmental issues. (L2, L3)					
3	Identify, analyze and interpret engineering problems associated with chemistry to					
	achieve solutions. (L3,L4)					
4	Develop solutions for problems associated with water, fuel, corrosion, battery,					
	nonmaterial and polymer technologies. (L4)					
Text B	ooks					
1	R V Gadag and A Nityananda Shetty, "Engineering Chemistry", I K Internation					
	publishing house, Second Edition. ISBN- 9380578598, 9789380578590					
2	Jain & Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company, 15 th					
	Edition -2007. ISBN: 13:9788-19041-0861.					
3.	Satyanarayana S and H C Shashidhara, Engineering Chemistry" Himalaya					
	Publishing house" Edition-2011, ISBN-9789350514986					
Refere	Reference Book					
1	Shubha Ramesh et.al., "Engineering Chemistry", Wiley India, 1st Edition, 2011,					
	ISBN: 978-81-265-1988-0.					

	Continuous Interna	l Evaluation (CIE)		
(Theory – 10	00 Marks)	(Laboratory- 50 Mar	Total	
Evaluation method	Course with assignment			(150)
Quiz -1	10	Performance of the	40	
Test -1	30	student in the laboratory,		
Quiz -2	10	every week		
Quiz -3	10	Test at the end of the	10	
Test -2	30	semester		
Assignments	10			
Total	100	Total	50	150

Semester End Evaluation	n (SEE	2)		
Theory (100 Marks)	Laboratory Marks)	Total (150)		
Part- –A Objective type questions	20	Experiment Conduction	40	
Part –B There should be five questions from five units. Each		with proper results		_
question should be for maximum of 16 Marks. The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80	Viva	10	-
The UNIT-2 and UNIT-3 should have an internal choice.				
Both the questions should be of the same complexity in terms of COs and Bloom's taxonomy level.		Total		
Total	100]	50	150

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Н											
CO2	Н					Μ	Μ			L		
CO3		Н		М								М
CO4			Η			L	L					М

	Semester: I/II	
	Course Title : PROGRAMMING IN C	
	(Theory and practice)	
	Code:12CS13/23 CIE Marks: 100 + 50	
	ek: L:T:P:S: 4:0:2:0 SEE Marks: 100 + 50	
Credits:		
<u> </u>	SEE Duration(Laboration)	tory):3Hrs
	Learning Objectives: The students will be able to	1
1	Develop arithmetic reasoning and analytical skills to apply knowled	ige of basic
2	concepts of programming in C to complex engineering problems Learn basic principles of problem solving through programming.	
<u>2</u> 3	Write C programs using appropriate programming constructs adopted in	<u>,</u>
3	programming.	1
4	Solve complex problems using C programming.	
-	UNIT-I	
	ction to Reasoning, Algorithms and Flowcharts	04 Hrs
	velopment – Examples related to Arithmetical Reasoning and	
	al Reasoning. Fundamentals of algorithms and flowcharts.	
	ction to C programming	03 Hrs
•	ming paradigms, Basic structure of C program, Process of compiling	
	ing a C program, Features of C language, Character set, C tokens,	
	s and Identifiers, Constants, Variables, Data types.	0.2 11
	g Input and Output operations	03 Hrs
	a character, Writing a character, Formatted input/output functions,	
Unionna	tted input/output functions. UNIT-II	
Onorato	rs and Expressions	03 Hrs
	ic operators, Relational operators, Logical Operators, Assignment	03 1118
	, Increment and decrement operators, Conditional operators, Bit-wise	
operators		
	ons, Precedence of arithmetic operators, Type conversion in	
	ons, Operator precedence and associativity.	
÷.	ming Constructs	06 Hrs
-	Making and Branching	
	making with 'if' statement, Simple 'if' statement, the 'ifelse'	
statemen	t, nesting of 'ifelse' statements, The 'else if' ladder, The 'switch'	
statemen	t, The '?:' operator, The 'goto' statement.	
	making and looping The while statement, the do statement, The	
Decision	ement, Jumps in loops.	
Decision		
Decision 'for' state	UNIT-III	
Decision 'for' state Arrays	UNIT-III	05 Hrs
Decision 'for' state Arrays One dim	UNIT-III ensional arrays, Declaration of one dimensional arrays. Initialization	05 Hrs
Decision 'for' state Arrays One dim of one	UNIT-III ensional arrays, Declaration of one dimensional arrays. Initialization dimensional arrays, Two dimensional arrays, Initializing two	05 Hrs
Decision 'for' state Arrays One dim of one dimensio	UNIT-III ensional arrays, Declaration of one dimensional arrays. Initialization dimensional arrays, Two dimensional arrays, Initializing two nal arrays.	
Decision 'for' state Arrays One dim of one dimension Character	UNIT-III ensional arrays, Declaration of one dimensional arrays. Initialization dimensional arrays, Two dimensional arrays, Initializing two nal arrays. er Arrays and Strings	05 Hrs 04 Hrs
Decision 'for' state Arrays One dim of one dimension Characte Declaring	UNIT-III ensional arrays, Declaration of one dimensional arrays. Initialization dimensional arrays, Two dimensional arrays, Initializing two nal arrays. er Arrays and Strings g and Initializing String Variables, Reading Strings from Terminal,	
Decision 'for' state Arrays One dim of one dimension Charact Declaring Writing	UNIT-III ensional arrays, Declaration of one dimensional arrays. Initialization dimensional arrays, Two dimensional arrays, Initializing two nal arrays. er Arrays and Strings g and Initializing String Variables, Reading Strings from Terminal, strings to screen, Arithmetic Operations on characters, String	
Decision 'for' state Arrays One dim of one dimension Charact Declaring Writing	UNIT-III ensional arrays, Declaration of one dimensional arrays. Initialization dimensional arrays, Two dimensional arrays, Initializing two nal arrays. er Arrays and Strings g and Initializing String Variables, Reading Strings from Terminal, strings to screen, Arithmetic Operations on characters, String as using with and without String handling functions.	
Decision 'for' state Arrays One dim of one dimension Characte Declaring Writing operation	UNIT-III ensional arrays, Declaration of one dimensional arrays. Initialization dimensional arrays, Two dimensional arrays, Initializing two nal arrays. er Arrays and Strings g and Initializing String Variables, Reading Strings from Terminal, strings to screen, Arithmetic Operations on characters, String as using with and without String handling functions. UNIT-IV	04 Hrs
Decision 'for' state Arrays One dim of one dimension Charact Declaring Writing operation User-def	UNIT-III ensional arrays, Declaration of one dimensional arrays. Initialization dimensional arrays, Two dimensional arrays, Initializing two nal arrays. er Arrays and Strings g and Initializing String Variables, Reading Strings from Terminal, strings to screen, Arithmetic Operations on characters, String as using with and without String handling functions.	

Function calls, Function declaration, Category of functions, Nesting of	
functions, Functions with arrays, Storage classes.	
Structures and Unions	05 Hrs
Introduction, Structure definition, Declaring structure variables, Accessing	
structure members, Structure initialization, Copying and comparing structure	
variables, Arrays of structure, Arrays within structures, Structure within	
structures, Structures and functions, Unions, Pre-processor directives.	
UNIT-V	
Pointers and Dynamic Memory Allocation	05 Hrs
Introduction, Accessing the address of a variable, Declaring and initializing of	
pointer variables, Accessing a variable using pointers, Chain of pointers,	
Pointer expressions, Pointer increments and scale factor, Pointers and arrays,	
Pointers and character strings, Dynamic memory allocation methods.	
File Managements in C	05 Hrs
Basic concepts of files, Defining and opening a file, closing of a file,	
Input/Output operations on files.	
Introduction to Data Structures: Linear and Non-Linear data structures,	
Definition and applications of Stacks, Queues.	

Note: Students are advised to use SWEBOK for experiential learning, available

at http://www.ieeelms.com/rvce

Expect	ed Course Outcomes: After completing the course, the students will be able to
1	Understand the fundamental computer concepts and basic programming principles
	like data types, input/output functions, operators, programming constructs and user
	defined functions.
2	Analyze and Develop algorithmic solutions to problems.
3	Implement and Demonstrate capabilities of writing 'C' programs in optimized,
	robust and reusable code.
4	Apply appropriate concepts of data structures like arrays, structures, stacks and
	Queues to implement programs for various applications.
Text B	ooks
1	P. Dey, M. Ghosh, "Programming in C", Oxford University press, First Edition,
	2007, ISBN (13): 9780195687910.
2	Kernighan B.W and Dennis M. Ritchie, "The C Programming Language", Second
	Edition, Prentice Hall, 2005, ISBN (13): 9780131101630.
Refere	nce Books
3	Yashavant P. Kanetkar. "Let Us C", BPB Publications, 13th edition, 2013, ISBN-13:
	9788183331630.
4	H. Schildt, Turbo C: The Complete Reference, Mcgraw Hill Education, 4th Edition,
	2000, ISBN-13: 9780070411838.
5	Yashavant P. Kanetkar, "Understanding Pointers in C", BPB publications, 3 rd edition,
	ISBN-13: 978-8176563581.

Laboratory Component:

Part - A

- 1. Write a C program to find and output all the roots of a given quadratic equation, for non-zero coefficients. (Using *if...else* statement).
- 2. Write a C program to simulate a simple calculator that performs arithmetic operations like addition, subtraction, multiplication, and division only on integers. Error message should be reported, if any attempt is made to divide by zero. (Using *switch* statement).
- 3. Write a C program
 - i) To check whether a given integer number is a Palindrome number or not.
 - ii) To check whether a given integer number is an Armstrong number or not.

Output the given number with suitable message (using looping constructs).

- 4. Write a C program
 - i) To generate and print first N Fibonacci numbers
 - ii) To find GCD and LCM of two integer numbers.
- 5. Write a C program to generate Pascal's triangle and Floyd's Triangle.
- 6. Write a C program to input N integer numbers into a single dimension array. Sort them in ascending order using bubble sort technique. Print both the given array and the sorted array with suitable headings.
- 7. Write a C program to read two matrices A (M x N) and B (P x Q) and compute the product of A and B after checking compatibility for multiplication. Output the input matrices and the resultant matrix with suitable headings and format. (Using two dimension arrays where array size M, N, P, $Q \le 3$).
- 8. Write a C program to read a matrix A(M x N) and to find the following
 - i) Sum of the elements of the row
 - ii) Sum of the elements of the column
 - iii) Sum of all the elements of the matrix
 - iv) Sum of both diagonal elements of a matrix
 - v) Transpose of a matrix.

Output the computed results with suitable headings.

- 9. Write C user defined functions
 - i) To input N real numbers into a single dimension array.
 - ii) Compute their mean.
 - iii) Compute their variance
 - iv) Compute their standard deviation
- 10. Write a C program
 - i) To check whether a given input string is a palindrome or not.
 - ii) To find the number of vowels, consonants, digits and white space in a string.
- 11. Write C user defined functions
 - i) To input N integer numbers into a single dimension array.
 - ii) To conduct a Binary search.

Using these functions, write a C program to accept the N integer numbers & given key integer number and conduct a Binary search. Report success or failure in the form of a suitable message.

- 12. Write C user defined functions
 - i) To input N integer numbers into a single dimension array.
 - ii) To sort the integer numbers in descending order using selection sort technique.
 - iii) To print the single dimension array elements.

Using these functions, write a C program to input N integer numbers into a single dimension array, sort them in ascending order, and print both the given array & the sorted array with suitable headings.

- 13. Create a structure called student with the following members student name, roll-no, marks in three tests. Write a C program to create N records and
 - i) Search on roll-no and display all the records

- ii) Average marks in each test
- iii) Highest in each test.
- 14. Write a C program to copy a string using pointers, to compare two strings using pointers and to concatenate two strings using pointers.
- 15. Write a C program to count no of lines, blank lines and comments in a given program using files.

Part – B

Students have to execute application programs related to the following topics such as:

- (a) Arrays
- (b) Structures
- (c) Pointers
- (d) Files
- (e) Stacks
- (f) Queues
- (g) Recursion
- (h) Strings

Continuous Intern (Theory – 10		Continuous Internal Evalu (Laboratory- 50 Marks	Total (150)	
Evaluation method	Course with assignment			
Quiz -1	10	Performance of the student	40	
Test -1	30	in the laboratory, every		
Quiz -2	10	week		
Quiz -3	10	Test at the end of the	10	
Test -2	30	semester		
Assignment	10			
Total	100	Total	50	150

* The lab component consists of two parts. Students will be given one program from the above Part A list. In Part-B, students may get any one application program from the topics such as Arrays, Structures, Pointers, Files, Stacks and Queues, Recursion and Strings. Students have to execute both the programs. The total marks for solving two programs are 40 marks. 70% of the total marks (40) will be for Part-A programs and 30% of the total marks (40) will be for Part-A programs. Marks obtained will be reduced to 20 marks. The Continuous Internal Evaluation (CIE) will be for 30 marks. So the total marks will be 50.

Semester End Evaluation	on (SE	E)		
Theory (100)		Laboratory(50)	**	Total (150)
Part- –A	20	Experiment		
Objective type questions		Conduction with	40	
Part –B		proper results		
There should be five questions from five units. Each		Viva	10	
question should be for maximum of 16 Marks.				
The UNIT-1, UNIT-4 and UNIT-5 should not have				
choice.	00			
	80			
The UNIT-2 and UNIT-3 should have an internal				
choice.				
Both the questions should be of the same complexity in				
terms of COs and Bloom's taxonomy level.				
Total	100	Total	50	150

** The question paper consists of Part A and Part B. Students will be given one program from the Part A list. In Part B, students may get any one application program from the topics such as Arrays, Structures, Pointers, Files, Stacks and Queues, Recursion and Strings. Students have to execute both the programs. The total marks for solving two programs are 40 marks. 70% of the total marks (40) will be for Part-A programs and 30% of the total marks (40) will be for Part-B programs. Viva voce will be for 10 marks .The total marks will be 50.

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Н	Н	М	Н	L	-	-	-	-	М	-	L
CO2	Н	Н	Н	Н	М	-	-	-	L	L	-	L
CO3	Н	Н	Н	Н	М	-	М	М	М	М	L	М
CO4	Н	Н	Н	Н	М	-	L	Н	М	М	L	М

	Semester: I/II				
	Course Title: BAS	ICS OF ELECTRONICS ENG	INEERING		
Cours	e Code: 16EC14/24		CIE Marks: 1	00	
Hrs/W	/eek: L:T:P:S : 4:0:0:4		SEE Marks: 1	.00	
Credit	ts: 05		SEE Duration		
Cours	e Learning Objectives: Tl	ne students will be able to			
1	Explain the operation of	simple devices like Diode, Bipo	olar Transistor.	MOSFET.	
-		ysical principles and Analyze sin			
	transistors and MOSFETS		1	e ,	
2	Design simple rectifier,	Zener regulator circuits, biasing	circuits for obt	aining the	
	desired operating point to	meet the required specifications.		_	
3	Analyze how a transistor	could be used as an amplifier and	as an oscillator.		
4	Evaluate the advantages of	f providing pagetive feedback in (mulifiant and D	Vacion	
4		f providing negative feedback in a		lesign	
	amplifiers.	Fiers, comparators and summers us	sing operational		
5		m of a general communication sy	stem and evolat	n different	
5	types of modulation techn		stem and explai		
6		ding blocks in digital electronics a	and Implement	simple	
Ū	logic functions after simp	e e		Jimpie	
	rogie functions after simp	UNIT-I			
		entions and Technology growth.		09 Hrs	
0	l Logic:		· · · ·		
		of logic expressions, Basic and U	•		
-	-	r/De-multiplexer and Encoder/De	coder.		
	onductor Diodes:	ristics Diada representary Conser	et of lood line		
		ristics, Diode parameters, Conception			
Tempe	erature effects and Small sig	gnal equivalent circuit. Numerical UNIT-II	examples.		
		agram of a DC Power supply,		09 Hrs	
Ũ		sis with and without Capacitor Fil	lter. Numerical		
examp					
· ·		of Zener diode. Voltage Regulator	r using a Zener		
	Numerical Examples.				
		ons of Photo diodes and LEDs.			
-	r Junction Transistor:	t and autaut sharest it' DO	lood line 1		
·		it and output characteristics, DC			
-		ted base current and Voltage d	iivider blasing		
circuit	s. Bias Stability and Stabili				
	UNIT-III				
		signal equivalent circuit, Transist		09 Hrs	
		guration. Gain in dBs, Frequency	response and		
Bandw					
	rical Examples.				
MOSE					
	• •	operation and characteristics,	-		
		plifier and as a switch, CMOS	Inverter and		
	S NAND.				
Feedb	ack and Oscillators:				

Advan	tages of Negative Feedback, Barkhausen criterion for oscillations, RC				
	shift and Crystal oscillator circuits. Numerical Examples.				
<u>r</u>	UNIT-IV				
0	/•] A]•0•	0.0 11			
-	tional Amplifiers:	09 Hrs			
	teristics of an Ideal Op Amp, Typical parameters of a practical op amp.				
	pplications: Inverting and Non Inverting amplifiers, Voltage follower, ummer, Integrator, Differentiator, Difference amplifier, Instrumentation				
<u> </u>	er Comparator and Schmitt trigger. Numerical Examples.				
	Acquisition Systems: Diagram of a Data Acquisition System, Sensors, Operating principles of				
	ve, Piezo-electric, Capacitive and Thermo-electric Sensors.				
	bles of Data converters (Analog to Digital and Digital to Analog				
conver					
conver	UNIT-V				
	unication Systems:	09 Hrs			
	magnetic spectrum, General block diagram of a communication system,				
	or modulation, Significance of bandwidth, AM and FM systems.				
	ical examples.				
	of Digital Communication, Keying techniques, Pulse Modulation				
technic	ues, Block diagram of a Digital Signal Processing and applications.				
Expect	ted Course Outcomes: After completing the course, the students will be	able to			
-					
1.	Understand the operation and the characteristics of the semiconduct				
	Operational Amplifiers, Communication Systems and Digital logic	tor various			
	applications.				
2.	Apply and analyze circuits for applications like rectifiers, Zener regulators applications applications and electronic				
2	power supply, amplifiers, oscillators, summers, comparators and electronic Conduct investigation through experiential learning and literature survey				
3.		to bring out			
4	safety, societal and environmental considerations. Evaluate the performance of the electronic circuits to meet given specifications.	tion wine			
4.	modern IT tools and present the outcomes.	ations using			
	modern 11 toors and present the outcomes.				
Text B	looks				
<u>1 1</u>	Robert L Boylestad, Louis Nashelsky; "Electronic Devices and Circu	it Theory"			
*	Prentice Hall India Publication; 10 th Edition; 2009; ISBN: 978-81-317-270				
2	Louis E. Frenzel, "Principles of Electronic Communication Systems", M				
-	Education Publication: 6 th Edition: 2012: ISBN 12: 078-0-07-066755-6				

2	Louis E. Frenzei, Principles of Electronic Communication Systems, McGraw Hill					
	Education Publication; 6 th Edition; 2012; ISBN-13: 978-0-07-066755-6					
Refer	Reference Books					
1	D.V.S Murthy, "Transducers & Instrumentation", Prentice Hall Publication, 2 nd					
	Edition, 2008, ISBN:978-81-203-3569-1					
2	Morris Mano; "Digital Logic and Computer Design"; Prentice Hall Publication; 54 th					
	Edition; 2007; ISBN: 978-81-317-1450-8					

Continuous Internal Evaluation (CIE) (Theory – 100 Marks)					
Evaluation method	Course with Self-study				
Quiz -1	10				
Test -1	25				
Quiz -2	10				
Quiz -3	10				
Test -2	25				
Self-study (EL)	20				
Total	100				

Semester End Evaluation	
(Theory-100 Marks)	
Part- –A	20
Objective type questions	20
Part –B	
There should be five questions from five units. Each question should be for maximum of 16 Marks.	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	
The UNIT-2 and UNIT-3 should have an internal choice.	80
Both the questions should be of the same complexity in terms of COs and	
Bloom's taxonomy level.	
Total	100

	-				CO-I		pping	-		-	-	
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Н	М	М	-	L	-	-	-	-	-	-	-
CO2	М	Н	Н	Μ	L	-	-	-	-	-	-	-
CO3	L	Н	L	Н	М	-	Н	-	М	-	-	Н
CO4	L	Μ	L	Μ	Н	-	-	-	-	Н	-	-
TT 1 3	ъл I.	•	T	1								

E.

		Semester: I / II				
		CS OF MECHANICAL ENGINEERING				
2		Theory and Practice)				
	Code: 16ME15/25	CIE Marks:100+50				
	eek: L:T:P:S: 4:0:2:0	SEE Marks:100+50				
Credits	:05	SEE Duration(Theory): 3 Hrs				
Course	Learning Objectives: The	SEE Duration(Laboratory): 3	nrs			
Course						
1		nethods of generation of energy and functions of di	fferent			
	subsystems of energy gen					
2	Compute the properties of	f steam in different phases and estimate the perfor	mance			
	parameters of IC Engines					
3	Familiarize with the work	ing of steam turbines, hydraulic turbines, gas turbin	nes, IC			
	Engines, Refrigeration cy	cles, Machine tools, belt and gear drives, soldering	ng and			
	welding	-				
4	•	g machining, Build sheet metal models and demo	nstrate			
	soldering and welding skil					
		UNIT I				
Proper	ties of Steam and Steam tu	rbines : Steam generation, properties of steam in	9			
		operties of steam using steam tables - Numericals,	Hrs			
		· ·	nrs			
Classification of steam turbines (Impulse and Reaction turbines), working of steam						
turbines, comparison of steam turbines.						
		rbines: Working of Pelton, Francis and Kaplan				
	-	king of gas turbine cycles, Simple Brayton cycle				
-	-	gas turbine cycles, Functions of gas turbine cycle				
compon	ents such as turbine, combu	stion chamber, compressor and condenser				
		UNIT –II				
		Classification, Working of two stroke and four	9			
stroke	petrol and diesel engines	, Otto cycle, Diesel cycle, computation of	Hrs			
perform	ance parameters such as l	Brake Power, Indicated Power, Mean Effective				
Pressure, Brake thermal efficiency, Indicated thermal efficiency and specific fuel						
consumption - Numericals						
Refrigeration: Refrigeration effect, working of vapour compression and vapour						
absorpti	absorption refrigeration systems, CoP, Ton of refrigeration, comparison of vapour					
compres	compression system with vapour absorption system, Refrigerants and their properties					
		UNIT -III				
Machin	e Tools - Classification of	lathe, Specifications of lathe, Lathe operations -	9			
			Hrs			
-	Drilling - Classification of drilling machines, working of radial drilling machine, drilling operations Concept of CNC machines, Advantages of CNC machines over					
-	tional Machines	c machines, Auvantages of CIVC machines over				
Conven	uonai machines					
		UNIT -IV	~			
-	-	machines, working of horizontal milling machine,	9			
-		Classification of grinding machines, working of	Hrs			
surface,						

Joining Processes: Classification of welding processes, working of arc welding and gas welding processes. Soldering, types of solders and fluxes cylindrical and centre less grinding machines

UNIT -V

Power Transmission - Types of Belt drives, Flat belt drive, open and cross belt	8
drive, Derivation for length of belt in open and cross belt drives, Derivation for ratio	Hrs
of tension in belts, velocity ratio, creep, slip and idler pulley - Numericals	
Gear Drives - Classification of Gears, simple and compound gear train - Numericals	

	Mechanical Engineering Practice Lab				
Lathe	operations: Preparation of models using MS rods - Plain Turning, Step turning, tape	r			
turning	g, Knurling - Three Models 13 Hr	S			
Sheet	metal work: Preparation of sheet metal models - Cone, cylinder, prism, pyramid and				
their fr	ustums with soldering 12 Hr	S			
Arc W	Velding: Preparation of Lap and Butt joints 02 Hr	S			
Demo	nstration: IC Engines and Hydraulic Turbines, Fitting 02 Hr	S			
Expec	ted Course Outcomes: After completing the course, the students will be able to				
1	Explain conventional methods of generation of energy and functions of differen	ıt			
	subsystems of energy generation cycles and working principles of machine tools	3,			
	energy generation and refrigeration systems (L2)				
2	Analyze properties of steam in different phases, Examine performance parameters o	of			
	IC Engines, compute parameters such as length and tension of belt drives (L3, L4)				
3					
4	4 Develop models involving machining. (L5)				
Text B	Book				
1	Gopalakrishna K R, "A Text Book of Elements of Mechanical Engineering", 30tl	h			
	Edition, Subhash Publishers, ISBN - 13, 1234567153375,				
Refere	ence Books				
1	Trymbaka Murthy S, "A Text Book of Elements of Mechanical Engineering", I k	ζ			
	International Publishing House Pvt. Ltd., III New Edition, 2008, ISBN: 9380578571				
2	Choudhury S K H, Coudhury A K H and Nirjhar Roy, "Elements of Workshop	р			
	Technology", Vol. 1, Media Promoters and Publishers, XIII Edition, 2013				
3	Groover M P, Zimmer E W, "CAD / CAM", Pearson Education Ltd., V Edition	ı,			
	ISBN: 5788177584165, 2008				

	Continuo	us Internal Evaluation (CIE)		
(Theory –	100 Marks)	(Laboratory- 50 Marks)		Total
Evaluation method	Course with assignment	_		(150)
Quiz -1	10	Performance of the student in the	40	
Test -1	30	laboratory, every week		
Quiz -2	10			
Quiz -3	10	Test at the end of the semester	10	
Test -2	30			
Assignments	10]
Total	100	Total	50	150

Semester End Evaluati	on (SE	E)		
Theory (100)		Laboratory	Total (150)	
Part- –A	20	Experiment		
Objective type questions		Conduction	40	
Part –B		with proper		
There should be five questions from five units. Each		results		
question should be for maximum of 16 Marks.		Viva	10	
The UNIT-1, UNIT-4 and UNIT-5 should not have any choice.	80			
The UNIT-2 and UNIT-3 should have an internal choice.				
Both the questions should be of the same complexity				
in terms of COs and Bloom's taxonomy level.				
Total	100	Total	50	150

					CO-]	PO Ma	pping					
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	Н	Μ	Μ	-	-	L	-	-	-	-	-	-
CO2	Μ	Μ	Μ	Μ	-	-	-	-	-	-	-	-
CO3	Н	Н	Μ	L	-	-	-	-	-	-	-	-
CO4	Н	Н	М	М	-	-	-	-	-	-	-	-

Semester: I/II				
Course Title: PROFESSIONAL PRACTICE-I				
(COMMUNICAT	TVE ENGLISH)			
Course Code:16HSE16/26	CIE Marks: 50 marks			
Hrs/Week: L:T:P:S : 2 hrs	SEE Marks: 50 marks			
Credits: Audit	SEE Duration			

Course Learning Objectives: To enable the students in concepts and application of English language skills

	and Detailed)	anning				
2	Interpreting factual information, interpreting gist/summary					
3	Listening techniques to comprehend spoken English in various accents					
4	English speaking in contextual scenarios					
	Explaining a process, Exchanging information, Comparing and contrasting ar Making an inquiry.	nd				
	POWER technique to compose and edit messages for given context with prop vocabulary and punctuation	ber				
	Identify fossilized errors in spoken and written English and help them to ident of improvement	tify areas				
	UNIT-I					
and info spoken	Formal and informal introduction method of introducing oneself; formal, neutral and informal writing styles; applying techniques to express about oneself through spoken and written forms. Applying reading skills to interpret visual data; applying listening skills to recall specific information; Sentence corrections.					
	UNIT-II					
in con compre	Techniques to improve listening and reading skills; applying the techniques learnt in contextual exercises. Skimming and scanning techniques in reading comprehension; Usage of tenses; parallel construction; homophones and usage of right words in the given contexts.					
	UNIT-III					
errors a emails	Fossilization errors in spoken English; POWER- technique of writing; Pronoun errors and misplaced modifiers. Commonly used terms in business; structure of emails and its key elements; subject verb agreement; Practice exercises to apply the techniques learnt.					
	UNIT-IV					
modal	Applying speaking skills to present a product; structure of formal letter; usage of 4 Hrs modal verbs. Expressions during collaborative discussions; commonly used business vocabulary; expressions related to degree of possibility.					
	UNIT-V					
Practice	e exercises for listening and phonetics.	2 Hrs				

Expecte	ed Course Outcomes: After completing the course, the students will be able to				
CO1	Describe techniques of effective reading				
CO2	Interpreting factual information and gist/summary				
CO3	Apply reading techniques in practice exercises				
CO4	Apply listening techniques to comprehend spoken English in various accents				
CO5	Apply English speaking skills in contextual scenarios				
CO6	Demonstrate power technique to compose and edit messages for given context with				
	proper vocabulary and punctuation				
Text Bo	ooks				
1	Mark Ibbotson, Professional English in Use - Technical English for				
	Professionals, 1st ed. Cambridge: UK, Cambridge University Press, 2009.				
2	Leo Jones and Richard Alexander, New International Business English				
	Workbook, 2nd ed.(revised), Cambridge: UK, Cambridge University Press, 1996				
3	Simon Sweeny, English For Business Communication, 2nd ed., Cambridge: UK,				
	Cambridge University Press, 2003				
4	Murphy, Intermediate English Grammar - With Answers, 2nd ed., Asia,				
	Cambridge University Press, 2007				

Scheme of Continuous Internal Evaluation (CIE) CIE consists of three tests each for 25 marks (10 marks or grammar & Vocabulary, 5 arks or Reading, 5 marks for speaking and 5 marks for listening) out of which best of two will be considered. The tests component will have 25 marks in CIE.

Scheme of Semester End Evaluation (SEE)

The question paper consists of 5 parts that is Reading, Speaking, Writing and Grammar each for 10 marks. For grammar part the questions will be multiple choice questions, for reading part a comprehension along with the questions related to that would be given. For listening audios will be played and questions related to that will be given. For speaking each student will be provided with a topic.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										Н		
CO2										Н		
CO3										Н		
CO4										Н		
CO5										Н		
CO6										Н		